Cargando…

Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream

Decline in winter sea-ice concentration (SIC) in the Barents-Kara Sea significantly impacts climate through increased heat release to the atmosphere. However, the past Barents-Kara SIC decrease rate is underestimated in the majority of Coupled Model Intercomparison Project Phase 6 (CMIP6) climate mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamagami, Yoko, Watanabe, Masahiro, Mori, Masato, Ono, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287400/
https://www.ncbi.nlm.nih.gov/pubmed/35840582
http://dx.doi.org/10.1038/s41467-022-31117-6
Descripción
Sumario:Decline in winter sea-ice concentration (SIC) in the Barents-Kara Sea significantly impacts climate through increased heat release to the atmosphere. However, the past Barents-Kara SIC decrease rate is underestimated in the majority of Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. Here we show that climate model simulations can reproduce the Barents-Kara SIC trend for 1970–2017 when sea surface temperature (SST) variability in the Gulf Stream region is constrained by observations. The constrained warming of the Gulf Stream strengthens ocean heat transport to the Barents-Kara Sea that enhances the SIC decline. The linear trends between the SIC and SST are highly correlated in the CMIP6 ensemble, suggesting that the externally forced component of the Gulf Stream SST increase explains up to 56% of the forced Barents-Kara SIC trend. Therefore, future warming of the Gulf Stream can be an essential pacemaker of the SIC decline.