Cargando…

Sound localization in web-based 3D environments

Sound delivery is a key aspect of immersivity in virtual and augmented reality (VR/AR), with studies hinting at a correlation between users’ ability to locate sounds around them and the ‘feeling of being there’. This is particularly true for WebVR, a method of delivering immersive experiences throug...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajguru, Chinmay, Brianza, Giada, Memoli, Gianluca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287443/
https://www.ncbi.nlm.nih.gov/pubmed/35840617
http://dx.doi.org/10.1038/s41598-022-15931-y
Descripción
Sumario:Sound delivery is a key aspect of immersivity in virtual and augmented reality (VR/AR), with studies hinting at a correlation between users’ ability to locate sounds around them and the ‘feeling of being there’. This is particularly true for WebVR, a method of delivering immersive experiences through a local web browser that has recently captured attention in multiple industries. In WebVR, audio is the main spatial cue. Designers need to select the correct number of sound sources so that users perceive the location of incoming sound correctly. Information on how users localize sound is essential. Sound localization experiments, so far, have been run only in empty spaces or closed rooms, without clear indications for designers in WebVR. Thus, in this study, we investigate sound localization directly through WebVR. To do so, we designed a traditional empty room for training and a city-like virtual environment for testing purposes. In our paper, we also discuss key design parameters, differences in perception for vertical and horizontal directions, the impact of training, and the role of changing virtual environments. In addition, we introduce and test a new sound cue along with the traditional pink noise sound to measure and explore the impact of different sound cues in different environments. The results demonstrate the potential of exploring sound localization using WebVR, and our study will support the development of virtual experiences in human-computer interaction that may be able to reach a large number of participants using a local web browser.