Cargando…
Label-free cell tracking enables collective motion phenotyping in epithelial monolayers
Collective cell migration is an umbrella term for a rich variety of cell behaviors, whose distinct character is important for biological function, notably for cancer metastasis. One essential feature of collective behavior is the motion of cells relative to their immediate neighbors. We introduce an...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287486/ https://www.ncbi.nlm.nih.gov/pubmed/35856018 http://dx.doi.org/10.1016/j.isci.2022.104678 |
_version_ | 1784748263371440128 |
---|---|
author | Gu, Shuyao Lee, Rachel M. Benson, Zackery Ling, Chenyi Vitolo, Michele I. Martin, Stuart S. Chalfoun, Joe Losert, Wolfgang |
author_facet | Gu, Shuyao Lee, Rachel M. Benson, Zackery Ling, Chenyi Vitolo, Michele I. Martin, Stuart S. Chalfoun, Joe Losert, Wolfgang |
author_sort | Gu, Shuyao |
collection | PubMed |
description | Collective cell migration is an umbrella term for a rich variety of cell behaviors, whose distinct character is important for biological function, notably for cancer metastasis. One essential feature of collective behavior is the motion of cells relative to their immediate neighbors. We introduce an AI-based pipeline to segment and track cell nuclei from phase-contrast images. Nuclei segmentation is based on a U-Net convolutional neural network trained on images with nucleus staining. Tracking, based on the Crocker-Grier algorithm, quantifies nuclei movement and allows for robust downstream analysis of collective motion. Because the AI algorithm required no new training data, our approach promises to be applicable to and yield new insights for vast libraries of existing collective motion images. In a systematic analysis of a cell line panel with oncogenic mutations, we find that the collective rearrangement metric, D(2)(min,) which reflects non-affine motion, shows promise as an indicator of metastatic potential. |
format | Online Article Text |
id | pubmed-9287486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92874862022-07-17 Label-free cell tracking enables collective motion phenotyping in epithelial monolayers Gu, Shuyao Lee, Rachel M. Benson, Zackery Ling, Chenyi Vitolo, Michele I. Martin, Stuart S. Chalfoun, Joe Losert, Wolfgang iScience Article Collective cell migration is an umbrella term for a rich variety of cell behaviors, whose distinct character is important for biological function, notably for cancer metastasis. One essential feature of collective behavior is the motion of cells relative to their immediate neighbors. We introduce an AI-based pipeline to segment and track cell nuclei from phase-contrast images. Nuclei segmentation is based on a U-Net convolutional neural network trained on images with nucleus staining. Tracking, based on the Crocker-Grier algorithm, quantifies nuclei movement and allows for robust downstream analysis of collective motion. Because the AI algorithm required no new training data, our approach promises to be applicable to and yield new insights for vast libraries of existing collective motion images. In a systematic analysis of a cell line panel with oncogenic mutations, we find that the collective rearrangement metric, D(2)(min,) which reflects non-affine motion, shows promise as an indicator of metastatic potential. Elsevier 2022-06-27 /pmc/articles/PMC9287486/ /pubmed/35856018 http://dx.doi.org/10.1016/j.isci.2022.104678 Text en © 2022. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Gu, Shuyao Lee, Rachel M. Benson, Zackery Ling, Chenyi Vitolo, Michele I. Martin, Stuart S. Chalfoun, Joe Losert, Wolfgang Label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
title | Label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
title_full | Label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
title_fullStr | Label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
title_full_unstemmed | Label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
title_short | Label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
title_sort | label-free cell tracking enables collective motion phenotyping in epithelial monolayers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287486/ https://www.ncbi.nlm.nih.gov/pubmed/35856018 http://dx.doi.org/10.1016/j.isci.2022.104678 |
work_keys_str_mv | AT gushuyao labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT leerachelm labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT bensonzackery labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT lingchenyi labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT vitolomichelei labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT martinstuarts labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT chalfounjoe labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers AT losertwolfgang labelfreecelltrackingenablescollectivemotionphenotypinginepithelialmonolayers |