Cargando…
Smartphone-based artificial intelligence using a transfer learning algorithm for the detection and diagnosis of middle ear diseases: A retrospective deep learning study
BACKGROUND: Middle ear diseases such as otitis media and middle ear effusion, for which diagnoses are often delayed or misdiagnosed, are among the most common issues faced by clinicians providing primary care for children and adolescents. Artificial intelligence (AI) has the potential to assist clin...
Autores principales: | Chen, Yen-Chi, Chu, Yuan-Chia, Huang, Chii-Yuan, Lee, Yen-Ting, Lee, Wen-Ya, Hsu, Chien-Yeh, Yang, Albert C., Liao, Wen-Huei, Cheng, Yen-Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287624/ https://www.ncbi.nlm.nih.gov/pubmed/35856040 http://dx.doi.org/10.1016/j.eclinm.2022.101543 |
Ejemplares similares
-
Smartphone-Enabled versus Conventional Otoscopy in Detecting Middle Ear Disease: A Meta-Analysis
por: Chen, Chih-Hao, et al.
Publicado: (2022) -
Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
por: Chen, Hung-Chang, et al.
Publicado: (2021) -
Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models
por: Yang, Chia-Yen, et al.
Publicado: (2023) -
Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
por: Wu, Cai, et al.
Publicado: (2021) -
Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes
por: Lin, Chin, et al.
Publicado: (2017)