Cargando…
MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy
BACKGROUND: To investigate the magnetic resonance imaging (MRI)-based radiomics value in predicting the survival of patients with locally advanced cervical squamous cell cancer (LACSC) treated with concurrent chemoradiotherapy (CCRT). METHODS: A total of 185 patients (training group: n = 128; testin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287951/ https://www.ncbi.nlm.nih.gov/pubmed/35842679 http://dx.doi.org/10.1186/s40644-022-00474-2 |
Sumario: | BACKGROUND: To investigate the magnetic resonance imaging (MRI)-based radiomics value in predicting the survival of patients with locally advanced cervical squamous cell cancer (LACSC) treated with concurrent chemoradiotherapy (CCRT). METHODS: A total of 185 patients (training group: n = 128; testing group: n = 57) with LACSC treated with CCRT between January 2014 and December 2018 were retrospectively enrolled in this study. A total of 400 radiomics features were extracted from T2-weighted imaging, apparent diffusion coefficient map, arterial- and delayed-phase contrast-enhanced MRI. Univariate Cox regression and least absolute shrinkage and selection operator Cox regression was applied to select radiomics features and clinical characteristics that could independently predict progression-free survival (PFS) and overall survival (OS). The predictive capability of the prediction model was evaluated using Harrell’s C-index. Nomograms and calibration curves were then generated. Survival curves were generated using the Kaplan-Meier method, and the log-rank test was used for comparison. RESULTS: The radiomics score achieved significantly better predictive performance for the estimation of PFS (C-index, 0.764 for training and 0.762 for testing) and OS (C-index, 0.793 for training and 0.750 for testing), compared with the 2018 FIGO staging system (C-index for PFS, 0.657 for training and 0.677 for testing; C-index for OS, 0.665 for training and 0.633 for testing) and clinical-predicting model (C-index for PFS, 0.731 for training and 0.725 for testing; C-index for OS, 0.708 for training and 0.693 for testing) (P < 0.05). The combined model constructed with T stage, lymph node metastasis position, and radiomics score achieved the best performance for the estimation of PFS (C-index, 0.792 for training and 0.809 for testing) and OS (C-index, 0.822 for training and 0.785 for testing), which were significantly higher than those of the radiomics score (P < 0.05). CONCLUSIONS: The MRI-based radiomics score could provide effective information in predicting the PFS and OS in patients with LACSC treated with CCRT. The combined model (including MRI-based radiomics score and clinical characteristics) showed the best prediction performance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-022-00474-2. |
---|