Cargando…
A Diabetic Retinopathy Classification Framework Based on Deep-Learning Analysis of OCT Angiography
PURPOSE: Reliable classification of referable and vision threatening diabetic retinopathy (DR) is essential for patients with diabetes to prevent blindness. Optical coherence tomography (OCT) and its angiography (OCTA) have several advantages over fundus photographs. We evaluated a deep-learning-aid...
Autores principales: | Zang, Pengxiao, Hormel, Tristan T., Wang, Xiaogang, Tsuboi, Kotaro, Huang, David, Hwang, Thomas S., Jia, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288155/ https://www.ncbi.nlm.nih.gov/pubmed/35822949 http://dx.doi.org/10.1167/tvst.11.7.10 |
Ejemplares similares
-
Deep Learning for Diagnosing and Segmenting Choroidal Neovascularization in OCT Angiography in a Large Real-World Data Set
por: Wang, Jie, et al.
Publicado: (2023) -
Deep-Learning–Aided Diagnosis of Diabetic Retinopathy, Age-Related Macular Degeneration, and Glaucoma Based on Structural and Angiographic OCT
por: Zang, Pengxiao, et al.
Publicado: (2022) -
Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data
por: Lo, Julian, et al.
Publicado: (2021) -
Convolutional Neural Network–Based Automated Quality Assessment of OCT and OCT Angiography Image Maps in Individuals With Neurodegenerative Disease
por: Lee, Terry, et al.
Publicado: (2023) -
Deep Learning Using Preoperative AS-OCT Predicts Graft Detachment in DMEK
por: Patefield, Alastair, et al.
Publicado: (2023)