Cargando…

Spatial heterogeneity of air pollution statistics in Europe

Air pollution is one of the leading causes of death globally, and continues to have a detrimental effect on our health. In light of these impacts, an extensive range of statistical modelling approaches has been devised in order to better understand air pollution statistics. However, the time-varying...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Hankun, Schäfer, Benjamin, Beck, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288230/
https://www.ncbi.nlm.nih.gov/pubmed/35842439
http://dx.doi.org/10.1038/s41598-022-16109-2
Descripción
Sumario:Air pollution is one of the leading causes of death globally, and continues to have a detrimental effect on our health. In light of these impacts, an extensive range of statistical modelling approaches has been devised in order to better understand air pollution statistics. However, the time-varying statistics of different types of air pollutants are far from being fully understood. The observed probability density functions (PDFs) of concentrations depend very much on the spatial location and on the pollutant substance. In this paper, we analyse a large variety of data from 3544 different European monitoring sites and show that the PDFs of nitric oxide (NO), nitrogen dioxide ([Formula: see text] ) and particulate matter ([Formula: see text] and [Formula: see text] ) concentrations generically exhibit heavy tails and are asymptotically well approximated by q-exponential distributions with a given width parameter [Formula: see text] . We observe that the power-law parameter q and the width parameter [Formula: see text] vary widely for the different spatial locations. For each substance, we find different patterns of parameter clouds in the [Formula: see text] plane. These depend on the type of pollutants and on the environmental characteristics (urban/suburban/rural/traffic/industrial/background). This means the effective statistical physics description of air pollution exhibits a strong degree of spatial heterogeneity.