Cargando…
Cirsilineol Inhibits the Proliferation of Human Prostate Cancer Cells by Inducing Reactive Oxygen Species (ROS)-Mediated Apoptosis
Cirsilineol has been reported to exhibit anticancer effects against several human cancer cell lines. The present study was designed to evaluate the anticancer effects of cirsilineol against the human DU-145 prostate cancer cells. The results showed that cirsilineol suppressed the proliferation of DU...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288295/ https://www.ncbi.nlm.nih.gov/pubmed/35855832 http://dx.doi.org/10.1155/2022/7975664 |
Sumario: | Cirsilineol has been reported to exhibit anticancer effects against several human cancer cell lines. The present study was designed to evaluate the anticancer effects of cirsilineol against the human DU-145 prostate cancer cells. The results showed that cirsilineol suppressed the proliferation of DU-145 cancer cells in a dose-dependent manner with minimal cytotoxic effects against the normal cells. The IC(50) of cirsilineol was found to be 7 μM and 110 μM against prostate cancer DU-145 and normal HPrEC prostate cells, respectively. Acridine orange and ethidium bromide (AO/EB) staining showed that cirsilineol induced apoptosis in DU-145 prostate cancer cells. The Annexin V/PI staining further confirmed the induction of apoptosis in DU-145 cells. The western blot analysis showed that cirsilineol suppressed the expression of Bax and upregulated the expression of Bcl-2 in prostate cancer DU-145 cells. Moreover, cirsilineol caused a dose-dependent increase in reactive oxygen species (ROS) levels in prostate cancer. Wound healing and Transwell assays showed that cirsilineol inhibits migration and invasion of DU-145 prostate cancer cells. Summing up, the results suggest that cirsilineol suppresses the proliferation of prostate cancer cells and may prove to be a beneficial lead molecule for the development of chemotherapy for prostate cancer. |
---|