Cargando…
Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin
PURPOSE: Investigate the effect of low nanodiamond (ND) addition and autoclave polymerization on the flexural strength, impact strength, and hardness of polymethylmethacrylate (PMMA) denture base. METHODS: A total of 240 heat polymerized PMMA were fabricated with low ND concentrations of 0.1%, 0.25%...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288300/ https://www.ncbi.nlm.nih.gov/pubmed/35855810 http://dx.doi.org/10.1155/2022/6583084 |
_version_ | 1784748441127092224 |
---|---|
author | Fouda, Shaimaa M. Gad, Mohammed M. Ellakany, Passent A. Al Ghamdi, Maram Khan, Soban Q. Akhtar, Sultan Ali, Mohamed S. Al-Harbi, Fahad A. |
author_facet | Fouda, Shaimaa M. Gad, Mohammed M. Ellakany, Passent A. Al Ghamdi, Maram Khan, Soban Q. Akhtar, Sultan Ali, Mohamed S. Al-Harbi, Fahad A. |
author_sort | Fouda, Shaimaa M. |
collection | PubMed |
description | PURPOSE: Investigate the effect of low nanodiamond (ND) addition and autoclave polymerization on the flexural strength, impact strength, and hardness of polymethylmethacrylate (PMMA) denture base. METHODS: A total of 240 heat polymerized PMMA were fabricated with low ND concentrations of 0.1%, 0.25%, and 0.5%, and unmodified as control. The specimens were divided equally into group I: conventionally polymerized PMMA by water bath and group II: polymerized by the autoclave. The impact strength, flexural strength, and elastic modulus were tested using the Charpy-type impact-testing machine and three-point bending test, respectively. A scanning electron microscope (SEM) was used to analyze the fractured surfaces. Surface hardness was measured by a hardness tester with a Vickers diamond. The bonding and interaction between the PMMA and ND particles were analyzed by the Fourier-transform infrared (FTIR) spectroscope. ANOVA and post hoc Tukey test were used for data analysis (α = 0.05). RESULTS: ND addition significantly increased the flexural strength of groups I and II (p < 0.001, p=0.003); it was highest (128.8 MPa) at 0.25% ND concentration for group I and at 0.1% for group II. Elastic modulus increased at 0.1% ND for both groups (p=0.004, p=0.373), but the increase was statistically significant for group I only. Impact strength showed no significant change with the addition of ND in groups I and II (p=0.227, p=0.273), as well as surface hardness in group I (p=0.143). Hardness decreased significantly with 0.25%ND in group II. CONCLUSION: The addition of ND at low concentration increased the elastic modulus and flexural strength of conventionally and autoclave polymerized denture base resin. Autoclave polymerization significantly increased the flexural strength, impact strength, and hardness of unmodified PMMA and hardness of 0.5% ND group. |
format | Online Article Text |
id | pubmed-9288300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92883002022-07-17 Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin Fouda, Shaimaa M. Gad, Mohammed M. Ellakany, Passent A. Al Ghamdi, Maram Khan, Soban Q. Akhtar, Sultan Ali, Mohamed S. Al-Harbi, Fahad A. Int J Biomater Research Article PURPOSE: Investigate the effect of low nanodiamond (ND) addition and autoclave polymerization on the flexural strength, impact strength, and hardness of polymethylmethacrylate (PMMA) denture base. METHODS: A total of 240 heat polymerized PMMA were fabricated with low ND concentrations of 0.1%, 0.25%, and 0.5%, and unmodified as control. The specimens were divided equally into group I: conventionally polymerized PMMA by water bath and group II: polymerized by the autoclave. The impact strength, flexural strength, and elastic modulus were tested using the Charpy-type impact-testing machine and three-point bending test, respectively. A scanning electron microscope (SEM) was used to analyze the fractured surfaces. Surface hardness was measured by a hardness tester with a Vickers diamond. The bonding and interaction between the PMMA and ND particles were analyzed by the Fourier-transform infrared (FTIR) spectroscope. ANOVA and post hoc Tukey test were used for data analysis (α = 0.05). RESULTS: ND addition significantly increased the flexural strength of groups I and II (p < 0.001, p=0.003); it was highest (128.8 MPa) at 0.25% ND concentration for group I and at 0.1% for group II. Elastic modulus increased at 0.1% ND for both groups (p=0.004, p=0.373), but the increase was statistically significant for group I only. Impact strength showed no significant change with the addition of ND in groups I and II (p=0.227, p=0.273), as well as surface hardness in group I (p=0.143). Hardness decreased significantly with 0.25%ND in group II. CONCLUSION: The addition of ND at low concentration increased the elastic modulus and flexural strength of conventionally and autoclave polymerized denture base resin. Autoclave polymerization significantly increased the flexural strength, impact strength, and hardness of unmodified PMMA and hardness of 0.5% ND group. Hindawi 2022-07-09 /pmc/articles/PMC9288300/ /pubmed/35855810 http://dx.doi.org/10.1155/2022/6583084 Text en Copyright © 2022 Shaimaa M. Fouda et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fouda, Shaimaa M. Gad, Mohammed M. Ellakany, Passent A. Al Ghamdi, Maram Khan, Soban Q. Akhtar, Sultan Ali, Mohamed S. Al-Harbi, Fahad A. Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin |
title | Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin |
title_full | Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin |
title_fullStr | Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin |
title_full_unstemmed | Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin |
title_short | Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin |
title_sort | flexural properties, impact strength, and hardness of nanodiamond-modified pmma denture base resin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288300/ https://www.ncbi.nlm.nih.gov/pubmed/35855810 http://dx.doi.org/10.1155/2022/6583084 |
work_keys_str_mv | AT foudashaimaam flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT gadmohammedm flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT ellakanypassent flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT aalghamdimaram flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT khansobanq flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT akhtarsultan flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT alimohameds flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin AT alharbifahada flexuralpropertiesimpactstrengthandhardnessofnanodiamondmodifiedpmmadenturebaseresin |