Cargando…
Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice
Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) and one of the leading causes of death. An alternative effective treatment to ameliorate and relieve LN and delay the process of renal tissue fibrosis is urgently needed in the clinical setting. Jiedu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288302/ https://www.ncbi.nlm.nih.gov/pubmed/35855861 http://dx.doi.org/10.1155/2022/4301033 |
_version_ | 1784748441678643200 |
---|---|
author | Liu, Jingqun Ma, Qing Sun, Qice Luo, Qihan Wang, Yiheng Wang, Cheng Zhu, Akao Zhao, Lisha Yin, Lu Lou, Jiang Dong, Yu Qiu, Ping |
author_facet | Liu, Jingqun Ma, Qing Sun, Qice Luo, Qihan Wang, Yiheng Wang, Cheng Zhu, Akao Zhao, Lisha Yin, Lu Lou, Jiang Dong, Yu Qiu, Ping |
author_sort | Liu, Jingqun |
collection | PubMed |
description | Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) and one of the leading causes of death. An alternative effective treatment to ameliorate and relieve LN and delay the process of renal tissue fibrosis is urgently needed in the clinical setting. Jieduquyuziyin prescription (JP) has been successfully used to treat SLE, but its potential mechanisms are not sufficiently understood. In this study, we treated MRL/lpr mice with JP for 8 weeks and treated human renal tubular epithelial cells (human kidney 2 (HK-2)) with drug-containing serum to observe the antagonistic effects of JP on inflammation and fibrosis, as well as to investigate the possible mechanisms. Results demonstrated that JP significantly reduced urinary protein and significantly improved pathological abnormalities. Metabolomics combined with ingenuity pathway analysis illustrated that the process of kidney injury in lupus mice may be closely related to farnesoid X receptor (FXR) pathway abnormalities. Microarray biomimetic analysis and LN patients indicated that FXR may play a protective role as an effective therapeutic target for LN and renal fibrosis. JP significantly increased the expression of FXR and inhibited the expression of its downstream targets, namely, nuclear transcription factor κB (NF-κB) and α-smooth muscle actin (α-SMA), in the kidney of MRL/lpr mice and HK-2 cells, as confirmed by in vitro and in vivo experiments. In conclusion, JP may mediate the activation of renal FXR expression and inhibit NF-κB and α-SMA expression to exert anti-inflammatory and antifibrotic effects for LN prevention and treatment. |
format | Online Article Text |
id | pubmed-9288302 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92883022022-07-17 Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice Liu, Jingqun Ma, Qing Sun, Qice Luo, Qihan Wang, Yiheng Wang, Cheng Zhu, Akao Zhao, Lisha Yin, Lu Lou, Jiang Dong, Yu Qiu, Ping Oxid Med Cell Longev Research Article Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) and one of the leading causes of death. An alternative effective treatment to ameliorate and relieve LN and delay the process of renal tissue fibrosis is urgently needed in the clinical setting. Jieduquyuziyin prescription (JP) has been successfully used to treat SLE, but its potential mechanisms are not sufficiently understood. In this study, we treated MRL/lpr mice with JP for 8 weeks and treated human renal tubular epithelial cells (human kidney 2 (HK-2)) with drug-containing serum to observe the antagonistic effects of JP on inflammation and fibrosis, as well as to investigate the possible mechanisms. Results demonstrated that JP significantly reduced urinary protein and significantly improved pathological abnormalities. Metabolomics combined with ingenuity pathway analysis illustrated that the process of kidney injury in lupus mice may be closely related to farnesoid X receptor (FXR) pathway abnormalities. Microarray biomimetic analysis and LN patients indicated that FXR may play a protective role as an effective therapeutic target for LN and renal fibrosis. JP significantly increased the expression of FXR and inhibited the expression of its downstream targets, namely, nuclear transcription factor κB (NF-κB) and α-smooth muscle actin (α-SMA), in the kidney of MRL/lpr mice and HK-2 cells, as confirmed by in vitro and in vivo experiments. In conclusion, JP may mediate the activation of renal FXR expression and inhibit NF-κB and α-SMA expression to exert anti-inflammatory and antifibrotic effects for LN prevention and treatment. Hindawi 2022-07-09 /pmc/articles/PMC9288302/ /pubmed/35855861 http://dx.doi.org/10.1155/2022/4301033 Text en Copyright © 2022 Jingqun Liu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liu, Jingqun Ma, Qing Sun, Qice Luo, Qihan Wang, Yiheng Wang, Cheng Zhu, Akao Zhao, Lisha Yin, Lu Lou, Jiang Dong, Yu Qiu, Ping Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice |
title | Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice |
title_full | Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice |
title_fullStr | Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice |
title_full_unstemmed | Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice |
title_short | Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice |
title_sort | investigating the mechanisms of jieduquyuziyin prescription improves lupus nephritis and fibrosis via fxr in mrl/lpr mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288302/ https://www.ncbi.nlm.nih.gov/pubmed/35855861 http://dx.doi.org/10.1155/2022/4301033 |
work_keys_str_mv | AT liujingqun investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT maqing investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT sunqice investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT luoqihan investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT wangyiheng investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT wangcheng investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT zhuakao investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT zhaolisha investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT yinlu investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT loujiang investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT dongyu investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice AT qiuping investigatingthemechanismsofjieduquyuziyinprescriptionimproveslupusnephritisandfibrosisviafxrinmrllprmice |