Cargando…
A Survival Status Classification Model for Osteosarcoma Patients Based on E-CNN-SVM and Multisource Data Fusion
Traditional algorithms have the following drawbacks: (1) they only focus on a certain aspect of genetic data or local feature data of osteosarcoma patients, and the extracted feature information is not considered as a whole; (2) they do not equalize the sample data between categories; (3) the genera...
Autores principales: | Zhang, Qiang, Peng, Peng, Gu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288314/ https://www.ncbi.nlm.nih.gov/pubmed/35855803 http://dx.doi.org/10.1155/2022/9464182 |
Ejemplares similares
-
A novel proposed CNN–SVM architecture for ECG scalograms classification
por: Ozaltin, Oznur, et al.
Publicado: (2022) -
CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation
por: Xue, Di-Xiu, et al.
Publicado: (2016) -
Semi-Supervised Classification of PolSAR Images Based on Co-Training of CNN and SVM with Limited Labeled Samples
por: Zhao, Mingjun, et al.
Publicado: (2023) -
Hybrid SVM-CNN Classification Technique for Human–Vehicle Targets in an Automotive LFMCW Radar †
por: Wu, Qisong, et al.
Publicado: (2020) -
Five-Class Classification of Cervical Pap Smear Images: A Study of CNN-Error-Correcting SVM Models
por: Huong, Audrey K. C., et al.
Publicado: (2021)