Cargando…
An Efficient Machine Learning-Based Feature Optimization Model for the Detection of Dyslexia
Dyslexia is among the most common neurological disorders in children. Detection of dyslexia therefore remains an important pursuit for the research works across various domains which is illustrated by the plethora of work presented in diverse scientific articles. The work presented herein attempted...
Autores principales: | Ahmad, Nazir, Rehman, Mohammed Burhanur, El Hassan, Hatim Mohammed, Ahmad, Iqrar, Rashid, Mamoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288336/ https://www.ncbi.nlm.nih.gov/pubmed/35855801 http://dx.doi.org/10.1155/2022/8491753 |
Ejemplares similares
-
Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia
por: Tamboer, P., et al.
Publicado: (2016) -
Comparative phylogenomic insights of KCS and ELO gene families in Brassica species indicate their role in seed development and stress responsiveness
por: Khan, Uzair Muhammad, et al.
Publicado: (2023) -
Identifying Determinants of Dyslexia: An Ultimate Attempt Using Machine Learning
por: Walda, Sietske, et al.
Publicado: (2022) -
Feature Signature Discovery for Autism Detection: An Automated Machine Learning Based Feature Ranking Framework
por: Jacob, Shomona Gracia, et al.
Publicado: (2023) -
Dyslexia: neurobiology, clinical features, evaluation and management
por: Munzer, Tiffany, et al.
Publicado: (2020)