Cargando…
Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN
BACKGROUND: Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated se...
Autores principales: | Connell, Marc, Xin, Yi, Gerard, Sarah E., Herrmann, Jacob, Shah, Parth K., Martin, Kevin T., Rezoagli, Emanuele, Ippolito, Davide, Rajaei, Jennia, Baron, Ryan, Delvecchio, Paolo, Humayun, Shiraz, Rizi, Rahim R., Bellani, Giacomo, Cereda, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288584/ https://www.ncbi.nlm.nih.gov/pubmed/35817338 http://dx.doi.org/10.1016/j.ymeth.2022.07.007 |
Ejemplares similares
-
Unsupervised Dark-Channel Attention-Guided CycleGAN for Single-Image Dehazing
por: Chen, Jiahao, et al.
Publicado: (2020) -
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022) -
Mol-CycleGAN: a generative model for molecular optimization
por: Maziarka, Łukasz, et al.
Publicado: (2020)