Cargando…
Earthquake pattern analysis using subsequence time series clustering
In this paper, a subsequence time-series clustering algorithm is proposed to identify the strongly coupled aftershocks sequences and Poissonian background activity from earthquake catalogs of active regions. The proposed method considers the inter-event time statistics between the successive pair of...
Autores principales: | Vijay, Rahul Kumar, Nanda, Satyasai Jagannath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288819/ https://www.ncbi.nlm.nih.gov/pubmed/35873879 http://dx.doi.org/10.1007/s10044-022-01092-1 |
Ejemplares similares
-
Coronavirus disease 2019 (COVID-19): survival analysis using deep learning and Cox regression model
por: Atlam, Mostafa, et al.
Publicado: (2021) -
A Review of Subsequence Time Series Clustering
por: Zolhavarieh, Seyedjamal, et al.
Publicado: (2014) -
Identification of characteristics frequency and hot-spots in protein sequence of COVID-19 disease
por: Pathak, Vikas, et al.
Publicado: (2022) -
A rotation based regularization method for semi-supervised learning
por: Shukla, Prashant, et al.
Publicado: (2021) -
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks
por: Narin, Ali, et al.
Publicado: (2021)