Cargando…
Predicting COVID-19-Induced Lung Damage Based on Machine Learning Methods
In this paper, we consider the course of the coronavirus disease (COVID-19) in human patients. We investigate anamnesis, examination, and clinical analysis data, as well as other features that can affect the severity and mortality of COVID-19. Based on these features, we develop a set of machine lea...
Autores principales: | Vasilev, I. A., Petrovskiy, M. I., Mashechkin, I. V., Pankratyeva, L. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pleiades Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288865/ http://dx.doi.org/10.1134/S0361768822040065 |
Ejemplares similares
-
Silent Hypoxia in Covid-19: A Machine Learning Algorithm for Early Prediction
por: Khalpey, Zain I., et al.
Publicado: (2021) -
Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset
por: Muhammad, L. J., et al.
Publicado: (2020) -
Predicting women with depressive symptoms postpartum with machine learning methods
por: Andersson, Sam, et al.
Publicado: (2021) -
Predicting COVID‐19 Cases From Atmospheric Parameters Using Machine Learning Approach
por: Ogunjo, S. T., et al.
Publicado: (2022) -
Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19
por: Yu, Limin, et al.
Publicado: (2021)