Cargando…
Assuring the safety of AI-based clinical decision support systems: a case study of the AI Clinician for sepsis treatment
OBJECTIVES: Establishing confidence in the safety of Artificial Intelligence (AI)-based clinical decision support systems is important prior to clinical deployment and regulatory approval for systems with increasing autonomy. Here, we undertook safety assurance of the AI Clinician, a previously publ...
Autores principales: | Festor, Paul, Jia, Yan, Gordon, Anthony C, Faisal, A Aldo, Habli, Ibrahim, Komorowski, Matthieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289024/ https://www.ncbi.nlm.nih.gov/pubmed/35851286 http://dx.doi.org/10.1136/bmjhci-2022-100549 |
Ejemplares similares
-
Quantifying the impact of AI recommendations with explanations on prescription decision making
por: Nagendran, Myura, et al.
Publicado: (2023) -
Factors influencing clinicians' willingness to use an AI-based clinical decision support system
por: Choudhury, Avishek
Publicado: (2022) -
APPRAISE-AI Tool for Quantitative Evaluation of AI Studies for Clinical Decision Support
por: Kwong, Jethro C. C., et al.
Publicado: (2023) -
AI-clinician collaboration via disagreement prediction: A decision pipeline and retrospective analysis of real-world radiologist-AI interactions
por: Sanchez, Morgan, et al.
Publicado: (2023) -
Assessing Biases in Medical Decisions via Clinician and AI Chatbot Responses to Patient Vignettes
por: Kim, Jiyeong, et al.
Publicado: (2023)