Cargando…
Predicting 30-Day Readmission for Stroke Using Machine Learning Algorithms: A Prospective Cohort Study
BACKGROUND: Machine learning algorithms for predicting 30-day stroke readmission are rarely discussed. The aims of this study were to identify significant predictors of 30-day readmission after stroke and to compare prediction accuracy and area under the receiver operating characteristic (AUROC) cur...
Autores principales: | Chen, Yu-Ching, Chung, Jo-Hsuan, Yeh, Yu-Jo, Lou, Shi-Jer, Lin, Hsiu-Fen, Lin, Ching-Huang, Hsien, Hong-Hsi, Hung, Kuo-Wei, Yeh, Shu-Chuan Jennifer, Shi, Hon-Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289395/ https://www.ncbi.nlm.nih.gov/pubmed/35860493 http://dx.doi.org/10.3389/fneur.2022.875491 |
Ejemplares similares
-
Cost Utility Analysis of Multidisciplinary Postacute Care for Stroke: A Prospective Six-Hospital Cohort Study
por: Chen, Yu-Ching, et al.
Publicado: (2022) -
Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients
por: Darabi, Negar, et al.
Publicado: (2021) -
Multidiscipline Stroke Post-Acute Care Transfer System: Propensity-Score-Based Comparison of Functional Status
por: Wang, Chung-Yuan, et al.
Publicado: (2019) -
Prediction of 30-Day Readmission After Stroke Using Machine Learning and Natural Language Processing
por: Lineback, Christina M., et al.
Publicado: (2021) -
Association between the LACE+ index and unplanned 30-day hospital readmissions in hospitalized patients with stroke
por: Jun-O'Connell, Adalia H., et al.
Publicado: (2022)