Cargando…
Modeling cardiomyocyte mechanics and autoregulation of contractility by mechano-chemo-transduction feedback
The heart pumps blood into circulation against vascular resistance and actively regulates the contractile force to compensate for mechanical load changes. Our experimental data show that cardiomyocytes have a mechano-chemo-transduction (MCT) mechanism that increases intracellular [Formula: see text]...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289640/ https://www.ncbi.nlm.nih.gov/pubmed/35860762 http://dx.doi.org/10.1016/j.isci.2022.104667 |
Sumario: | The heart pumps blood into circulation against vascular resistance and actively regulates the contractile force to compensate for mechanical load changes. Our experimental data show that cardiomyocytes have a mechano-chemo-transduction (MCT) mechanism that increases intracellular [Formula: see text] transient to enhance contractility in response to increased mechanical load. This study advances the cardiac excitation- [Formula: see text] signaling-contraction (E-C) coupling model on conceptual and technical fronts. First, we developed analytical and computational models to perform 3-dimensional mechanical analysis of cardiomyocytes contracting in a viscoelastic medium under mechanical load. Next, we proposed an MCT feedback loop in the E-C coupling dynamic system to shift the feedforward paradigm of cardiac E-C coupling to an autoregulation model. Our combined modeling and experimental studies reveal that MCT enables autoregulation of E-C coupling and contractility in single cardiomyocytes, which underlies the heart’s intrinsic autoregulation in compensatory response to load changes in order to maintain the stroke volume and cardiac output. |
---|