Cargando…

Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization

[Image: see text] Nuclear magnetic resonance suffers from an intrinsically low sensitivity, which can be overcome by dynamic nuclear polarization (DNP). Gd(III) complexes are attractive exogenous polarizing agents for magic angle spinning (MAS) DNP due to their high chemical stability in contrast to...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Yu, Palumbo, Chad T., Venkatesh, Amrit, Keener, Megan, Stevanato, Gabriele, Chauvin, Anne-Sophie, Menzildjian, Georges, Kuzin, Sergei, Yulikov, Maxim, Jeschke, Gunnar, Lesage, Anne, Mazzanti, Marinella, Emsley, Lyndon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289950/
https://www.ncbi.nlm.nih.gov/pubmed/35865791
http://dx.doi.org/10.1021/acs.jpcc.2c01721
_version_ 1784748780192530432
author Rao, Yu
Palumbo, Chad T.
Venkatesh, Amrit
Keener, Megan
Stevanato, Gabriele
Chauvin, Anne-Sophie
Menzildjian, Georges
Kuzin, Sergei
Yulikov, Maxim
Jeschke, Gunnar
Lesage, Anne
Mazzanti, Marinella
Emsley, Lyndon
author_facet Rao, Yu
Palumbo, Chad T.
Venkatesh, Amrit
Keener, Megan
Stevanato, Gabriele
Chauvin, Anne-Sophie
Menzildjian, Georges
Kuzin, Sergei
Yulikov, Maxim
Jeschke, Gunnar
Lesage, Anne
Mazzanti, Marinella
Emsley, Lyndon
author_sort Rao, Yu
collection PubMed
description [Image: see text] Nuclear magnetic resonance suffers from an intrinsically low sensitivity, which can be overcome by dynamic nuclear polarization (DNP). Gd(III) complexes are attractive exogenous polarizing agents for magic angle spinning (MAS) DNP due to their high chemical stability in contrast to nitroxide-based radicals. However, even the state-of-the-art Gd(III) complexes have so far provided relatively low DNP signal enhancements of ca. 36 in comparison to standard DNP biradicals, which show enhancements of over 200. Here, we report a series of new Gd(III) complexes for DNP and show that the observed DNP enhancements of the new and existing Gd(III) complexes are inversely proportional to the square of the zero-field splitting (ZFS) parameter D, which is in turn determined by the ligand-type and the local coordination environment. The experimental DNP enhancements at 9.4 T and the ZFS parameters measured with pulsed electron paramagnetic resonance (EPR) spectroscopy agree with the above model, paving the way for the development of more efficient Gd(III) polarizing agents.
format Online
Article
Text
id pubmed-9289950
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-92899502022-07-19 Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization Rao, Yu Palumbo, Chad T. Venkatesh, Amrit Keener, Megan Stevanato, Gabriele Chauvin, Anne-Sophie Menzildjian, Georges Kuzin, Sergei Yulikov, Maxim Jeschke, Gunnar Lesage, Anne Mazzanti, Marinella Emsley, Lyndon J Phys Chem C Nanomater Interfaces [Image: see text] Nuclear magnetic resonance suffers from an intrinsically low sensitivity, which can be overcome by dynamic nuclear polarization (DNP). Gd(III) complexes are attractive exogenous polarizing agents for magic angle spinning (MAS) DNP due to their high chemical stability in contrast to nitroxide-based radicals. However, even the state-of-the-art Gd(III) complexes have so far provided relatively low DNP signal enhancements of ca. 36 in comparison to standard DNP biradicals, which show enhancements of over 200. Here, we report a series of new Gd(III) complexes for DNP and show that the observed DNP enhancements of the new and existing Gd(III) complexes are inversely proportional to the square of the zero-field splitting (ZFS) parameter D, which is in turn determined by the ligand-type and the local coordination environment. The experimental DNP enhancements at 9.4 T and the ZFS parameters measured with pulsed electron paramagnetic resonance (EPR) spectroscopy agree with the above model, paving the way for the development of more efficient Gd(III) polarizing agents. American Chemical Society 2022-07-05 2022-07-14 /pmc/articles/PMC9289950/ /pubmed/35865791 http://dx.doi.org/10.1021/acs.jpcc.2c01721 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Rao, Yu
Palumbo, Chad T.
Venkatesh, Amrit
Keener, Megan
Stevanato, Gabriele
Chauvin, Anne-Sophie
Menzildjian, Georges
Kuzin, Sergei
Yulikov, Maxim
Jeschke, Gunnar
Lesage, Anne
Mazzanti, Marinella
Emsley, Lyndon
Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization
title Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization
title_full Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization
title_fullStr Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization
title_full_unstemmed Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization
title_short Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization
title_sort design principles for the development of gd(iii) polarizing agents for magic angle spinning dynamic nuclear polarization
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289950/
https://www.ncbi.nlm.nih.gov/pubmed/35865791
http://dx.doi.org/10.1021/acs.jpcc.2c01721
work_keys_str_mv AT raoyu designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT palumbochadt designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT venkateshamrit designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT keenermegan designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT stevanatogabriele designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT chauvinannesophie designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT menzildjiangeorges designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT kuzinsergei designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT yulikovmaxim designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT jeschkegunnar designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT lesageanne designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT mazzantimarinella designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization
AT emsleylyndon designprinciplesforthedevelopmentofgdiiipolarizingagentsformagicanglespinningdynamicnuclearpolarization