Cargando…
Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting
Machine learning (ML) studies are becoming increasingly popular in orthopedics but lack a critically appraisal of their adherence to peer‐reviewed guidelines. The objective of this review was to (1) evaluate quality and transparent reporting of ML prediction models in orthopedic surgery based on the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290012/ https://www.ncbi.nlm.nih.gov/pubmed/33734466 http://dx.doi.org/10.1002/jor.25036 |
_version_ | 1784748790483255296 |
---|---|
author | Groot, Olivier Q. Ogink, Paul T. Lans, Amanda Twining, Peter K. Kapoor, Neal D. DiGiovanni, William Bindels, Bas J. J. Bongers, Michiel E. R. Oosterhoff, Jacobien H. F. Karhade, Aditya V. Oner, F. C. Verlaan, Jorrit‐Jan Schwab, Joseph H. |
author_facet | Groot, Olivier Q. Ogink, Paul T. Lans, Amanda Twining, Peter K. Kapoor, Neal D. DiGiovanni, William Bindels, Bas J. J. Bongers, Michiel E. R. Oosterhoff, Jacobien H. F. Karhade, Aditya V. Oner, F. C. Verlaan, Jorrit‐Jan Schwab, Joseph H. |
author_sort | Groot, Olivier Q. |
collection | PubMed |
description | Machine learning (ML) studies are becoming increasingly popular in orthopedics but lack a critically appraisal of their adherence to peer‐reviewed guidelines. The objective of this review was to (1) evaluate quality and transparent reporting of ML prediction models in orthopedic surgery based on the transparent reporting of multivariable prediction models for individual prognosis or diagnosis (TRIPOD), and (2) assess risk of bias with the Prediction model Risk Of Bias ASsessment Tool. A systematic review was performed to identify all ML prediction studies published in orthopedic surgery through June 18th, 2020. After screening 7138 studies, 59 studies met the study criteria and were included. Two reviewers independently extracted data and discrepancies were resolved by discussion with at least two additional reviewers present. Across all studies, the overall median completeness for the TRIPOD checklist was 53% (interquartile range 47%–60%). The overall risk of bias was low in 44% (n = 26), high in 41% (n = 24), and unclear in 15% (n = 9). High overall risk of bias was driven by incomplete reporting of performance measures, inadequate handling of missing data, and use of small datasets with inadequate outcome numbers. Although the number of ML studies in orthopedic surgery is increasing rapidly, over 40% of the existing models are at high risk of bias. Furthermore, over half incompletely reported their methods and/or performance measures. Until these issues are adequately addressed to give patients and providers trust in ML models, a considerable gap remains between the development of ML prediction models and their implementation in orthopedic practice. |
format | Online Article Text |
id | pubmed-9290012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92900122022-07-20 Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting Groot, Olivier Q. Ogink, Paul T. Lans, Amanda Twining, Peter K. Kapoor, Neal D. DiGiovanni, William Bindels, Bas J. J. Bongers, Michiel E. R. Oosterhoff, Jacobien H. F. Karhade, Aditya V. Oner, F. C. Verlaan, Jorrit‐Jan Schwab, Joseph H. J Orthop Res RESEARCH ARTICLES Machine learning (ML) studies are becoming increasingly popular in orthopedics but lack a critically appraisal of their adherence to peer‐reviewed guidelines. The objective of this review was to (1) evaluate quality and transparent reporting of ML prediction models in orthopedic surgery based on the transparent reporting of multivariable prediction models for individual prognosis or diagnosis (TRIPOD), and (2) assess risk of bias with the Prediction model Risk Of Bias ASsessment Tool. A systematic review was performed to identify all ML prediction studies published in orthopedic surgery through June 18th, 2020. After screening 7138 studies, 59 studies met the study criteria and were included. Two reviewers independently extracted data and discrepancies were resolved by discussion with at least two additional reviewers present. Across all studies, the overall median completeness for the TRIPOD checklist was 53% (interquartile range 47%–60%). The overall risk of bias was low in 44% (n = 26), high in 41% (n = 24), and unclear in 15% (n = 9). High overall risk of bias was driven by incomplete reporting of performance measures, inadequate handling of missing data, and use of small datasets with inadequate outcome numbers. Although the number of ML studies in orthopedic surgery is increasing rapidly, over 40% of the existing models are at high risk of bias. Furthermore, over half incompletely reported their methods and/or performance measures. Until these issues are adequately addressed to give patients and providers trust in ML models, a considerable gap remains between the development of ML prediction models and their implementation in orthopedic practice. John Wiley and Sons Inc. 2021-03-29 2022-02 /pmc/articles/PMC9290012/ /pubmed/33734466 http://dx.doi.org/10.1002/jor.25036 Text en © 2021 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | RESEARCH ARTICLES Groot, Olivier Q. Ogink, Paul T. Lans, Amanda Twining, Peter K. Kapoor, Neal D. DiGiovanni, William Bindels, Bas J. J. Bongers, Michiel E. R. Oosterhoff, Jacobien H. F. Karhade, Aditya V. Oner, F. C. Verlaan, Jorrit‐Jan Schwab, Joseph H. Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting |
title | Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting |
title_full | Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting |
title_fullStr | Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting |
title_full_unstemmed | Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting |
title_short | Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting |
title_sort | machine learning prediction models in orthopedic surgery: a systematic review in transparent reporting |
topic | RESEARCH ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290012/ https://www.ncbi.nlm.nih.gov/pubmed/33734466 http://dx.doi.org/10.1002/jor.25036 |
work_keys_str_mv | AT grootolivierq machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT oginkpault machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT lansamanda machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT twiningpeterk machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT kapoorneald machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT digiovanniwilliam machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT bindelsbasjj machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT bongersmichieler machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT oosterhoffjacobienhf machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT karhadeadityav machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT onerfc machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT verlaanjorritjan machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting AT schwabjosephh machinelearningpredictionmodelsinorthopedicsurgeryasystematicreviewintransparentreporting |