Cargando…
AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline
PURPOSE: To externally validate a deep learning pipeline (AutoMorph) for automated analysis of retinal vascular morphology on fundus photographs. AutoMorph has been made publicly available, facilitating widespread research in ophthalmic and systemic diseases. METHODS: AutoMorph consists of four func...
Autores principales: | Zhou, Yukun, Wagner, Siegfried K., Chia, Mark A., Zhao, An, Woodward-Court, Peter, Xu, Moucheng, Struyven, Robbert, Alexander, Daniel C., Keane, Pearse A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290317/ https://www.ncbi.nlm.nih.gov/pubmed/35833885 http://dx.doi.org/10.1167/tvst.11.7.12 |
Ejemplares similares
-
Automated quantification of penile curvature using artificial intelligence
por: Abbas, Tariq O., et al.
Publicado: (2022) -
Bridging the Gap of AutoGraph Between Academia and Industry: Analyzing AutoGraph Challenge at KDD Cup 2020
por: Xu, Zhen, et al.
Publicado: (2022) -
Symbolic expression generation via variational auto-encoder
por: Popov, Sergei, et al.
Publicado: (2023) -
The classification of skateboarding tricks via transfer learning pipelines
por: Abdullah, Muhammad Amirul, et al.
Publicado: (2021) -
SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease
por: Veturi, Yoga Advaith, et al.
Publicado: (2022)