Cargando…
Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology
Net ecosystem CO(2) exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warmi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290483/ https://www.ncbi.nlm.nih.gov/pubmed/34363286 http://dx.doi.org/10.1111/gcb.15823 |
_version_ | 1784748911139749888 |
---|---|
author | Liberati, Dario Guidolotti, Gabriele de Dato, Giovanbattista De Angelis, Paolo |
author_facet | Liberati, Dario Guidolotti, Gabriele de Dato, Giovanbattista De Angelis, Paolo |
author_sort | Liberati, Dario |
collection | PubMed |
description | Net ecosystem CO(2) exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10‐year night‐time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night‐time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant‐level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO(2) fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming. |
format | Online Article Text |
id | pubmed-9290483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92904832022-07-20 Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology Liberati, Dario Guidolotti, Gabriele de Dato, Giovanbattista De Angelis, Paolo Glob Chang Biol Primary Research Articles Net ecosystem CO(2) exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem‐climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10‐year night‐time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night‐time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant‐level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO(2) fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming. John Wiley and Sons Inc. 2021-08-16 2021-11 /pmc/articles/PMC9290483/ /pubmed/34363286 http://dx.doi.org/10.1111/gcb.15823 Text en © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Primary Research Articles Liberati, Dario Guidolotti, Gabriele de Dato, Giovanbattista De Angelis, Paolo Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology |
title | Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology |
title_full | Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology |
title_fullStr | Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology |
title_full_unstemmed | Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology |
title_short | Enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: The role of nitrogen‐driven changes in plant morphology |
title_sort | enhancement of ecosystem carbon uptake in a dry shrubland under moderate warming: the role of nitrogen‐driven changes in plant morphology |
topic | Primary Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290483/ https://www.ncbi.nlm.nih.gov/pubmed/34363286 http://dx.doi.org/10.1111/gcb.15823 |
work_keys_str_mv | AT liberatidario enhancementofecosystemcarbonuptakeinadryshrublandundermoderatewarmingtheroleofnitrogendrivenchangesinplantmorphology AT guidolottigabriele enhancementofecosystemcarbonuptakeinadryshrublandundermoderatewarmingtheroleofnitrogendrivenchangesinplantmorphology AT dedatogiovanbattista enhancementofecosystemcarbonuptakeinadryshrublandundermoderatewarmingtheroleofnitrogendrivenchangesinplantmorphology AT deangelispaolo enhancementofecosystemcarbonuptakeinadryshrublandundermoderatewarmingtheroleofnitrogendrivenchangesinplantmorphology |