Cargando…
Use of an artificial intelligence‐based rule extraction approach to predict an emergency cesarean section
OBJECTIVE: One of the major problems with artificial intelligence (AI) is that it is generally known as a “black box”. Therefore, the present study aimed to construct an emergency cesarean section (CS) prediction system using an AI‐based rule extraction approach as a “white box” to detect the cause...
Autores principales: | Nagayasu, Yoko, Fujita, Daisuke, Ohmichi, Masahide, Hayashi, Yoichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290872/ https://www.ncbi.nlm.nih.gov/pubmed/34416018 http://dx.doi.org/10.1002/ijgo.13888 |
Ejemplares similares
-
Detection of Lower Albuminuria Levels and Early Development of Diabetic Kidney Disease Using an Artificial Intelligence-Based Rule Extraction Approach
por: Hayashi, Yoichi
Publicado: (2019) -
Pelvic Abscess after Cesarean Section Treated with Laparoscopic Drainage
por: Murayama, Yumi, et al.
Publicado: (2021) -
A Case of Intestinal Obstruction in Pregnancy Diagnosed by MRI and Treated by Intravenous Hyperalimentation
por: Daimon, Atsushi, et al.
Publicado: (2016) -
Non-invasive prediction of non-alcoholic steatohepatitis in Japanese patients with morbid obesity by artificial intelligence using rule extraction technology
por: Uehara, Daisuke, et al.
Publicado: (2018) -
The Effect of Maternal Coagulation Parameters on Fetal Acidemia in Placental Abruption
por: Sugimoto, Atsuko, et al.
Publicado: (2022)