Cargando…

Motions around conserved helical weak spots facilitate GPCR activation

G protein‐coupled receptors (GPCRs) participate in most physiological processes and are important drug targets in many therapeutic areas. Recently, many GPCR X‐ray structures became available, facilitating detailed studies of their sequence‐structure‐mobility‐function relations. We show that the fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Bibbe, Janne M., Vriend, Gert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290982/
https://www.ncbi.nlm.nih.gov/pubmed/34272892
http://dx.doi.org/10.1002/prot.26179
Descripción
Sumario:G protein‐coupled receptors (GPCRs) participate in most physiological processes and are important drug targets in many therapeutic areas. Recently, many GPCR X‐ray structures became available, facilitating detailed studies of their sequence‐structure‐mobility‐function relations. We show that the functional role of many conserved GPCR sequence motifs is to create weak spots in the transmembrane helices that provide the structural plasticity necessary for ligand binding and signaling. Different receptor families use different conserved sequence motifs to obtain similar helix irregularities that allow for the same motions upon GPCR activation. These conserved motions come together to facilitate the timely release of the conserved sodium ion to the cytosol. Most GPCR crystal structures could be determined only after stabilization of the transmembrane helices by mutations that remove weak spots. These mutations often lead to diminished binding of agonists, but not antagonists, which logically agrees with the fact that large helix rearrangements occur only upon agonist binding. Upon activation, six of the seven TM helices in GPCRs undergo helix motions and/or deformations facilitated by weak spots in these helices. The location of these weak spots is much more conserved than the sequence motifs that cause them. Knowledge about these weak spots helps understand the activation process of GPCRs and thus helps design medicines.