Cargando…

Azathioprine pretreatment ameliorates myocardial ischaemia reperfusion injury in diabetic rats by reducing oxidative stress, apoptosis, and inflammation

This study was presented to observe the therapeutic effects of azathioprine (AZA) pretreatment on myocardial ischaemia reperfusion (I/R) damage in diabetic rats. All rats were randomly separated into control + sham operation; control +I/R; diabetes mellitus (DM) +I/R and DM +I/R + AZA groups. Diabet...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Cuijie, Liu, Ling, Chen, Shuai, Niu, Junfei, Li, Sheng, Xie, Wenxian, Cheng, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291025/
https://www.ncbi.nlm.nih.gov/pubmed/34370882
http://dx.doi.org/10.1111/1440-1681.13569
Descripción
Sumario:This study was presented to observe the therapeutic effects of azathioprine (AZA) pretreatment on myocardial ischaemia reperfusion (I/R) damage in diabetic rats. All rats were randomly separated into control + sham operation; control +I/R; diabetes mellitus (DM) +I/R and DM +I/R + AZA groups. Diabetic rat models were established by intraperitoneally injecting 60 mg/kg streptozotocin (STZ). Diabetic rats were given 3 mg/kg AZA daily by gavage for 5 days. Then, myocardial I/R rat models were constructed. Myocardial infarction size and myocardial damage were respectively detected by TTC and H&E staining. Cardiac injury markers (CK‐MB and MPO) and oxidative stress factors (SOD and MDA) were measured via ELISA. The protein expression of apoptotic markers (Caspase8, Caspase3, BAX and Bcl2), inflammatory factors (TLR4 and TNF‐α) and AKT1/GSK3β in myocardial tissues was measured by western blot, immunohistochemistry or immunofluorescence. Data showed that AZA pretreatment could lessen myocardial infarction size and myocardial damage, and could down‐regulate serum CK‐MB, MPO, SOD and MDA levels in diabetic rats under I/R. Furthermore, AZA pretreatment decreased Caspase8, Caspase3, BAX, TLR4 and TNF‐α expression, and increased Bcl2 expression in myocardial tissues of diabetic rats following I/R. Also, AZA pretreatment lowered AKT1, p‐AKT1, GSK3β and p‐GSK3β expression in diabetic heart after I/R. This study found that AZA may reduce myocardial injury in diabetic rats following I/R via reducing oxidative stress, cardiomyocyte apoptosis, and inflammatory response, which could be related to AKT1/GSK3β pathway inactivation.