Cargando…
Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system
Mating systems of haploid species such as fungi, algae, and bryophytes are either heterothallic (self‐incompatible) with two sex phenotypes (male and female, or mating type minus and plus in isogamous species) or homothallic (self‐compatible) with only a bisexual phenotype producing zygotes within a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291101/ https://www.ncbi.nlm.nih.gov/pubmed/34250602 http://dx.doi.org/10.1111/evo.14306 |
_version_ | 1784749064943828992 |
---|---|
author | Takahashi, Kohei Kawai‐Toyooka, Hiroko Ootsuki, Ryo Hamaji, Takashi Tsuchikane, Yuki Sekimoto, Hiroyuki Higashiyama, Tetsuya Nozaki, Hisayoshi |
author_facet | Takahashi, Kohei Kawai‐Toyooka, Hiroko Ootsuki, Ryo Hamaji, Takashi Tsuchikane, Yuki Sekimoto, Hiroyuki Higashiyama, Tetsuya Nozaki, Hisayoshi |
author_sort | Takahashi, Kohei |
collection | PubMed |
description | Mating systems of haploid species such as fungi, algae, and bryophytes are either heterothallic (self‐incompatible) with two sex phenotypes (male and female, or mating type minus and plus in isogamous species) or homothallic (self‐compatible) with only a bisexual phenotype producing zygotes within a clone. The anisogamous volvocine green alga Pleodorina starrii is a haploid species previously reported to have a heterothallic mating system. Here, we found that two additional culture strains originating from the same water system of P. starrii were taxonomically identified as P. starrii and produced male and female gametes and zygotes within a clone (bisexual). Sequences of rapidly evolving plastid genome regions were identical between the bisexual and unisexual (male or female) P. starrii strains. Intercrossings between the bisexual and unisexual strains demonstrated normal thick‐walled zygotes and high survivability of F1 strains. Thus, these strains belong to the same biological species. Pleodorina starrii has a new haploid mating system that is unique in having three sex phenotypes, namely, male, female, and bisexual. Genetic analyses suggested the existence of autosomal “bisexual factor” locus independent of volvocine male and female determining regions. The present findings increase our understanding of the initial evolutionary step of transition from heterothallism to homothallism. |
format | Online Article Text |
id | pubmed-9291101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92911012022-07-20 Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system Takahashi, Kohei Kawai‐Toyooka, Hiroko Ootsuki, Ryo Hamaji, Takashi Tsuchikane, Yuki Sekimoto, Hiroyuki Higashiyama, Tetsuya Nozaki, Hisayoshi Evolution Brief Communications Mating systems of haploid species such as fungi, algae, and bryophytes are either heterothallic (self‐incompatible) with two sex phenotypes (male and female, or mating type minus and plus in isogamous species) or homothallic (self‐compatible) with only a bisexual phenotype producing zygotes within a clone. The anisogamous volvocine green alga Pleodorina starrii is a haploid species previously reported to have a heterothallic mating system. Here, we found that two additional culture strains originating from the same water system of P. starrii were taxonomically identified as P. starrii and produced male and female gametes and zygotes within a clone (bisexual). Sequences of rapidly evolving plastid genome regions were identical between the bisexual and unisexual (male or female) P. starrii strains. Intercrossings between the bisexual and unisexual strains demonstrated normal thick‐walled zygotes and high survivability of F1 strains. Thus, these strains belong to the same biological species. Pleodorina starrii has a new haploid mating system that is unique in having three sex phenotypes, namely, male, female, and bisexual. Genetic analyses suggested the existence of autosomal “bisexual factor” locus independent of volvocine male and female determining regions. The present findings increase our understanding of the initial evolutionary step of transition from heterothallism to homothallism. John Wiley and Sons Inc. 2021-07-23 2021-11 /pmc/articles/PMC9291101/ /pubmed/34250602 http://dx.doi.org/10.1111/evo.14306 Text en © 2021 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Brief Communications Takahashi, Kohei Kawai‐Toyooka, Hiroko Ootsuki, Ryo Hamaji, Takashi Tsuchikane, Yuki Sekimoto, Hiroyuki Higashiyama, Tetsuya Nozaki, Hisayoshi Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system |
title | Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system
|
title_full | Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system
|
title_fullStr | Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system
|
title_full_unstemmed | Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system
|
title_short | Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system
|
title_sort | three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a self‐compatible mating system |
topic | Brief Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291101/ https://www.ncbi.nlm.nih.gov/pubmed/34250602 http://dx.doi.org/10.1111/evo.14306 |
work_keys_str_mv | AT takahashikohei threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT kawaitoyookahiroko threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT ootsukiryo threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT hamajitakashi threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT tsuchikaneyuki threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT sekimotohiroyuki threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT higashiyamatetsuya threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem AT nozakihisayoshi threesexphenotypesinahaploidalgalspeciesgiveinsightsintotheevolutionarytransitiontoaselfcompatiblematingsystem |