Cargando…
Combining machine learning and quantum mechanics yields more chemically aware molecular descriptors for medicinal chemistry applications
Molecular interaction fields (MIFs), describing molecules in terms of their ability to interact with any chemical entity, are one of the most established and versatile concepts in drug discovery. Improvement of this molecular description is highly desirable for in silico drug discovery and medicinal...
Autores principales: | Tortorella, Sara, Carosati, Emanuele, Sorbi, Giulia, Bocci, Giovanni, Cross, Simon, Cruciani, Gabriele, Storchi, Loriano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291213/ https://www.ncbi.nlm.nih.gov/pubmed/34410004 http://dx.doi.org/10.1002/jcc.26737 |
Ejemplares similares
-
ADME-Space: a new tool for medicinal chemists to explore ADME properties
por: Bocci, Giovanni, et al.
Publicado: (2017) -
Comparative study on quantum descriptors, molecular docking and dynamic simulation of antiviral drugs with Covid-19
por: Ahmed Mahmoud Gad, Elshafie, et al.
Publicado: (2021) -
Enhanced Room‐Temperature Photoluminescence Quantum Yield in Morphology Controlled J‐Aggregates
por: Anantharaman, Surendra B., et al.
Publicado: (2021) -
The Effects of Ca(2+) Concentration and E200K Mutation on the Aggregation Propensity of PrP(C): A Computational Study
por: Marrone, Alessandro, et al.
Publicado: (2016) -
Homodimeric complexes of the 90–231 human prion: a multilayered computational study based on FMO/GRID-DRY approach
por: Paciotti, Roberto, et al.
Publicado: (2022)