Cargando…
Modelling state‐transition dynamics in resting‐state brain signals by the hidden Markov and Gaussian mixture models
Recent studies have proposed that one can summarize brain activity into dynamics among a relatively small number of hidden states and that such an approach is a promising tool for revealing brain function. Hidden Markov models (HMMs) are a prevalent approach to inferring such neural dynamics among d...
Autores principales: | Ezaki, Takahiro, Himeno, Yu, Watanabe, Takamitsu, Masuda, Naoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291560/ https://www.ncbi.nlm.nih.gov/pubmed/34250639 http://dx.doi.org/10.1111/ejn.15386 |
Ejemplares similares
-
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017) -
Closer to critical resting-state neural dynamics in individuals with higher fluid intelligence
por: Ezaki, Takahiro, et al.
Publicado: (2020) -
Functional connectivity of the hippocampus and its subfields in resting‐state networks
por: Ezama, Laura, et al.
Publicado: (2021) -
Energy landscapes of resting-state brain networks
por: Watanabe, Takamitsu, et al.
Publicado: (2014) -
Clustering Coefficients for Correlation Networks
por: Masuda, Naoki, et al.
Publicado: (2018)