Cargando…

Ultrahigh‐Throughput Detection of Enzymatic Alcohol Dehydrogenase Activity in Microfluidic Droplets with a Direct Fluorogenic Assay

The exploration of large DNA libraries of metagenomic or synthetic origin is greatly facilitated by ultrahigh‐throughput assays that use monodisperse water‐in‐oil emulsion droplets as sequestered reaction compartments. Millions of samples can be generated and analysed in microfluidic devices at kHz...

Descripción completa

Detalles Bibliográficos
Autores principales: Klaus, Miriam, Zurek, Paul Jannis, Kaminski, Tomasz S., Pushpanath, Ahir, Neufeld, Katharina, Hollfelder, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291573/
https://www.ncbi.nlm.nih.gov/pubmed/34643305
http://dx.doi.org/10.1002/cbic.202100322
Descripción
Sumario:The exploration of large DNA libraries of metagenomic or synthetic origin is greatly facilitated by ultrahigh‐throughput assays that use monodisperse water‐in‐oil emulsion droplets as sequestered reaction compartments. Millions of samples can be generated and analysed in microfluidic devices at kHz speeds, requiring only micrograms of reagents. The scope of this powerful platform for the discovery of new sequence space is, however, hampered by the limited availability of assay substrates, restricting the functions and reaction types that can be investigated. Here, we broaden the scope of detectable biochemical transformations in droplet microfluidics by introducing the first fluorogenic assay for alcohol dehydrogenases (ADHs) in this format. We have synthesized substrates that release a pyranine fluorophore (8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid, HPTS) when enzymatic turnover occurs. Pyranine is well retained in droplets for >6 weeks (i. e. 14‐times longer than fluorescein), avoiding product leakage and ensuring excellent assay sensitivity. Product concentrations as low as 100 nM were successfully detected, corresponding to less than one turnover per enzyme molecule on average. The potential of our substrate design was demonstrated by efficient recovery of a bona fide ADH with an >800‐fold enrichment. The repertoire of droplet screening is enlarged by this sensitive and direct fluorogenic assay to identify dehydrogenases for biocatalytic applications.