Cargando…
Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study
BACKGROUND: Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291712/ https://www.ncbi.nlm.nih.gov/pubmed/35822835 http://dx.doi.org/10.1080/13510002.2022.2094109 |
_version_ | 1784749196380733440 |
---|---|
author | Zuchegna, Candida Porcellini, Antonio Messina, Samantha |
author_facet | Zuchegna, Candida Porcellini, Antonio Messina, Samantha |
author_sort | Zuchegna, Candida |
collection | PubMed |
description | BACKGROUND: Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases. RESULTS AND METHODS: Here, we investigated the transient physiological induction, at both transcriptional and translational levels, of small GTPases Ras in response to redox stimulation. Cultured astrocytes were treated with hydrogen peroxide as in bolus addition and relative mRNA levels of murine hras and kras genes were detected by qRT-PCR. We found that de novo transcription of hras mRNA in reactive astrocytes is redox-sensitive and mimics the prototypical redox-sensitive gene iNOS. Protein abundance in combination with protein turnover measurements by cycloheximide-chase experiments revealed distinct translation efficiency, GTP-bound enrichment, and protein turnover rates between the two isoforms H-Ras and K-Ras. CONCLUSION: Reports from recent years support a significant role of H-Ras in driving redox processes. Beyond its canonical functions, Ras may impact on the core astrocytic cellular machinery that operates during redox stimulation. |
format | Online Article Text |
id | pubmed-9291712 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-92917122022-07-19 Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study Zuchegna, Candida Porcellini, Antonio Messina, Samantha Redox Rep Research Article BACKGROUND: Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases. RESULTS AND METHODS: Here, we investigated the transient physiological induction, at both transcriptional and translational levels, of small GTPases Ras in response to redox stimulation. Cultured astrocytes were treated with hydrogen peroxide as in bolus addition and relative mRNA levels of murine hras and kras genes were detected by qRT-PCR. We found that de novo transcription of hras mRNA in reactive astrocytes is redox-sensitive and mimics the prototypical redox-sensitive gene iNOS. Protein abundance in combination with protein turnover measurements by cycloheximide-chase experiments revealed distinct translation efficiency, GTP-bound enrichment, and protein turnover rates between the two isoforms H-Ras and K-Ras. CONCLUSION: Reports from recent years support a significant role of H-Ras in driving redox processes. Beyond its canonical functions, Ras may impact on the core astrocytic cellular machinery that operates during redox stimulation. Taylor & Francis 2022-07-13 /pmc/articles/PMC9291712/ /pubmed/35822835 http://dx.doi.org/10.1080/13510002.2022.2094109 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zuchegna, Candida Porcellini, Antonio Messina, Samantha Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study |
title | Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study |
title_full | Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study |
title_fullStr | Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study |
title_full_unstemmed | Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study |
title_short | Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study |
title_sort | redox-sensitive small gtpase h-ras in murine astrocytes, an in vitro study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291712/ https://www.ncbi.nlm.nih.gov/pubmed/35822835 http://dx.doi.org/10.1080/13510002.2022.2094109 |
work_keys_str_mv | AT zuchegnacandida redoxsensitivesmallgtpasehrasinmurineastrocytesaninvitrostudy AT porcelliniantonio redoxsensitivesmallgtpasehrasinmurineastrocytesaninvitrostudy AT messinasamantha redoxsensitivesmallgtpasehrasinmurineastrocytesaninvitrostudy |