Cargando…
Genetic analysis of coronary artery disease using tree-based automated machine learning informed by biology-based feature selection
Machine Learning (ML) approaches are increasingly being used in biomedical applications. Important challenges of ML include choosing the right algorithm and tuning the parameters for optimal performance. Automated ML (AutoML) methods, such as Tree-based Pipeline Optimization Tool (TPOT), have been d...
Autores principales: | Manduchi, Elisabetta, Le, Trang T., Fu, Weixuan, Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291719/ https://www.ncbi.nlm.nih.gov/pubmed/34310318 http://dx.doi.org/10.1109/TCBB.2021.3099068 |
Ejemplares similares
-
Embedding covariate adjustments in tree-based automated machine learning for biomedical big data analyses
por: Manduchi, Elisabetta, et al.
Publicado: (2020) -
Scaling tree-based automated machine learning to biomedical big data with a feature set selector
por: Le, Trang T, et al.
Publicado: (2020) -
The promise of automated machine learning for the genetic analysis of complex traits
por: Manduchi, Elisabetta, et al.
Publicado: (2021) -
Leveraging Automated Machine Learning for the Analysis of Global Public Health Data: A Case Study in Malaria
por: Manduchi, Elisabetta, et al.
Publicado: (2021) -
treeheatr: an R package for interpretable decision tree visualizations
por: Le, Trang T, et al.
Publicado: (2020)