Cargando…
Appraising prediction research: a guide and meta‐review on bias and applicability assessment using the Prediction model Risk Of Bias ASsessment Tool (PROBAST)
Over the past few years, a large number of prediction models have been published, often of poor methodological quality. Seemingly objective and straightforward, prediction models provide a risk estimate for the outcome of interest, usually based on readily available clinical information. Yet, using...
Autores principales: | de Jong, Ype, Ramspek, Chava L., Zoccali, Carmine, Jager, Kitty J., Dekker, Friedo W., van Diepen, Merel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291738/ https://www.ncbi.nlm.nih.gov/pubmed/34138495 http://dx.doi.org/10.1111/nep.13913 |
Ejemplares similares
-
External validation of prognostic models: what, why, how, when and where?
por: Ramspek, Chava L, et al.
Publicado: (2020) -
Towards the best kidney failure prediction tool: a systematic review and selection aid
por: Ramspek, Chava L, et al.
Publicado: (2019) -
Pharmacoepidemiology for nephrologists (part 2): potential biases and how to overcome them
por: Fu, Edouard L, et al.
Publicado: (2020) -
Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies
por: Kaiser, Isabelle, et al.
Publicado: (2022) -
Where to look for the most frequent biases?
por: Jager, Kitty J., et al.
Publicado: (2020)