Cargando…
Data‐enabled predictive control for quadcopters
We study the application of a data‐enabled predictive control (DeePC) algorithm for position control of real‐world nano‐quadcopters. The DeePC algorithm is a finite‐horizon, optimal control method that uses input/output measurements from the system to predict future trajectories without the need for...
Autores principales: | Elokda, Ezzat, Coulson, Jeremy, Beuchat, Paul N., Lygeros, John, Dörfler, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291934/ https://www.ncbi.nlm.nih.gov/pubmed/35873094 http://dx.doi.org/10.1002/rnc.5686 |
Ejemplares similares
-
Protecting Data Privacy in the Age of AI-Enabled Ophthalmology
por: Tom, Elysse, et al.
Publicado: (2020) -
Quadcopters Testing Platform for Educational Environments
por: Veyna, Uriel, et al.
Publicado: (2021) -
Autonomous Quadcopter Landing on a Moving Target
por: Gautam, Alvika, et al.
Publicado: (2022) -
Predicting evolution over multiple generations in deteriorating environments using evolutionarily explicit Integral Projection Models
por: Coulson, Tim, et al.
Publicado: (2021) -
PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design
por: Tran, Huu-Khoa, et al.
Publicado: (2016)