Cargando…
Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells
Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic tr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292126/ https://www.ncbi.nlm.nih.gov/pubmed/35793357 http://dx.doi.org/10.1371/journal.ppat.1010688 |
_version_ | 1784749296264937472 |
---|---|
author | Kalke, Kiira Lund, Liisa M. Nyman, Marie C. Levanova, Alesia A. Urtti, Arto Poranen, Minna M. Hukkanen, Veijo Paavilainen, Henrik |
author_facet | Kalke, Kiira Lund, Liisa M. Nyman, Marie C. Levanova, Alesia A. Urtti, Arto Poranen, Minna M. Hukkanen, Veijo Paavilainen, Henrik |
author_sort | Kalke, Kiira |
collection | PubMed |
description | Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2’-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms. |
format | Online Article Text |
id | pubmed-9292126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92921262022-07-19 Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells Kalke, Kiira Lund, Liisa M. Nyman, Marie C. Levanova, Alesia A. Urtti, Arto Poranen, Minna M. Hukkanen, Veijo Paavilainen, Henrik PLoS Pathog Research Article Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2’-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms. Public Library of Science 2022-07-06 /pmc/articles/PMC9292126/ /pubmed/35793357 http://dx.doi.org/10.1371/journal.ppat.1010688 Text en © 2022 Kalke et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kalke, Kiira Lund, Liisa M. Nyman, Marie C. Levanova, Alesia A. Urtti, Arto Poranen, Minna M. Hukkanen, Veijo Paavilainen, Henrik Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells |
title | Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells |
title_full | Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells |
title_fullStr | Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells |
title_full_unstemmed | Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells |
title_short | Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells |
title_sort | swarms of chemically modified antiviral sirna targeting herpes simplex virus infection in human corneal epithelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292126/ https://www.ncbi.nlm.nih.gov/pubmed/35793357 http://dx.doi.org/10.1371/journal.ppat.1010688 |
work_keys_str_mv | AT kalkekiira swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT lundliisam swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT nymanmariec swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT levanovaalesiaa swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT urttiarto swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT poranenminnam swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT hukkanenveijo swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells AT paavilainenhenrik swarmsofchemicallymodifiedantiviralsirnatargetingherpessimplexvirusinfectioninhumancornealepithelialcells |