Cargando…
Flexible co‐data learning for high‐dimensional prediction
Clinical research often focuses on complex traits in which many variables play a role in mechanisms driving, or curing, diseases. Clinical prediction is hard when data is high‐dimensional, but additional information, like domain knowledge and previously published studies, may be helpful to improve p...
Autores principales: | van Nee, Mirrelijn M., Wessels, Lodewyk F.A., van de Wiel, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292202/ https://www.ncbi.nlm.nih.gov/pubmed/34438466 http://dx.doi.org/10.1002/sim.9162 |
Ejemplares similares
-
ecpc: an R-package for generic co-data models for high-dimensional prediction
por: van Nee, Mirrelijn M., et al.
Publicado: (2023) -
Fast Marginal Likelihood Estimation of Penalties for Group-Adaptive Elastic Net
por: van Nee, Mirrelijn M., et al.
Publicado: (2022) -
Improved high-dimensional prediction with Random Forests by the use of co-data
por: te Beest, Dennis E., et al.
Publicado: (2017) -
Learning from a lot: Empirical Bayes for high‐dimensional model‐based prediction
por: van de Wiel, Mark A., et al.
Publicado: (2018) -
Testing for association between RNA-Seq and high-dimensional data
por: Rauschenberger, Armin, et al.
Publicado: (2016)