Cargando…
Study becomes insight: Ecological learning from machine learning
1. The ecological and environmental science communities have embraced machine learning (ML) for empirical modelling and prediction. However, going beyond prediction to draw insights into underlying functional relationships between response variables and environmental ‘drivers’ is less straightforwar...
Autores principales: | Yu, Qiuyan, Ji, Wenjie, Prihodko, Lara, Ross, C. Wade, Anchang, Julius Y., Hanan, Niall P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292299/ https://www.ncbi.nlm.nih.gov/pubmed/35874972 http://dx.doi.org/10.1111/2041-210X.13686 |
Ejemplares similares
-
Woody-biomass projections and drivers of change in sub-Saharan
Africa
por: Ross, C. Wade, et al.
Publicado: (2021) -
HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling
por: Ross, C. Wade, et al.
Publicado: (2018) -
Author Correction: HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling
por: Ross, C. Wade, et al.
Publicado: (2019) -
Analysis of stable states in global savannas: is the CART pulling the horse?
por: Hanan, Niall P, et al.
Publicado: (2014) -
Remotely sensed thermal decay rate: an index for vegetation monitoring
por: Kumar, S. S., et al.
Publicado: (2020)