Cargando…
Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particula...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292565/ https://www.ncbi.nlm.nih.gov/pubmed/34233047 http://dx.doi.org/10.1111/jeb.13900 |
_version_ | 1784749402596835328 |
---|---|
author | Martin, Jordan S. Jaeggi, Adrian V. |
author_facet | Martin, Jordan S. Jaeggi, Adrian V. |
author_sort | Martin, Jordan S. |
collection | PubMed |
description | Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. |
format | Online Article Text |
id | pubmed-9292565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92925652022-07-20 Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes Martin, Jordan S. Jaeggi, Adrian V. J Evol Biol Research Articles Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. John Wiley and Sons Inc. 2021-07-22 2022-04 /pmc/articles/PMC9292565/ /pubmed/34233047 http://dx.doi.org/10.1111/jeb.13900 Text en © 2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Martin, Jordan S. Jaeggi, Adrian V. Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
title | Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
title_full | Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
title_fullStr | Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
title_full_unstemmed | Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
title_short | Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
title_sort | social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292565/ https://www.ncbi.nlm.nih.gov/pubmed/34233047 http://dx.doi.org/10.1111/jeb.13900 |
work_keys_str_mv | AT martinjordans socialanimalmodelsforquantifyingplasticityassortmentandselectiononinteractingphenotypes AT jaeggiadrianv socialanimalmodelsforquantifyingplasticityassortmentandselectiononinteractingphenotypes |