Cargando…

Correlative imaging using super‐resolution fluorescence microscopy and soft X‐ray tomography at cryogenic temperatures provides a new way to assess virosome solutions for vaccine development

Active virosomes (AVs) are derivatives of viruses, broadly similar to ‘parent’ pathogens, with an outer envelope that contains a bespoke genome coding for four to five viral proteins capable of eliciting an antigenic response. AVs are essentially novel vaccine formulations that present on their surf...

Descripción completa

Detalles Bibliográficos
Autores principales: Okolo, Chidinma A., Jadhav, Archana, Phillips, Patrick, Dumoux, Maud, McMurray, Amanda A., Joshi, Vishwas D., Pizzey, Claire, Harkiolaki, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292697/
https://www.ncbi.nlm.nih.gov/pubmed/34333776
http://dx.doi.org/10.1111/jmi.13054
Descripción
Sumario:Active virosomes (AVs) are derivatives of viruses, broadly similar to ‘parent’ pathogens, with an outer envelope that contains a bespoke genome coding for four to five viral proteins capable of eliciting an antigenic response. AVs are essentially novel vaccine formulations that present on their surface selected viral proteins as antigens. Once administered, they elicit an initial ‘anti‐viral’ immune response. AVs are also internalised by host cells where their cargo viral genes are used to express viral antigen(s) intracellularly. These can then be transported to the host cell surface resulting in a second wave of antigen exposure and a more potent immuno‐stimulation. A new 3D correlative microscopy approach is used here to provide a robust analytical method for characterisation of Zika‐ and Chikungunya‐derivatised AV populations including vesicle size distribution and variations in antigen loading. Manufactured batches were compared to assess the extent and nature of batch‐to‐batch variations. We also show preliminary results that verify antigen expression on the surface of host cells. We present here a reliable and efficient high‐resolution 3D imaging regime that allows the evaluation of the microstructure and biochemistry of novel vaccine formulations such as AVs.