Cargando…
Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors
Influenza A virus has caused huge damage to human health and poultry production worldwide, but its global transmission patterns and influencing factors remain unclear. Here, by using the Nearest Genetic Distance Approach with genetic sequences data, we reconstructed the global transmission patterns...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292709/ https://www.ncbi.nlm.nih.gov/pubmed/32649020 http://dx.doi.org/10.1111/1749-4877.12469 |
_version_ | 1784749438733910016 |
---|---|
author | CHENG, Chaoyuan LI, Jing LIU, Wenjun XU, Lei ZHANG, Zhibin |
author_facet | CHENG, Chaoyuan LI, Jing LIU, Wenjun XU, Lei ZHANG, Zhibin |
author_sort | CHENG, Chaoyuan |
collection | PubMed |
description | Influenza A virus has caused huge damage to human health and poultry production worldwide, but its global transmission patterns and influencing factors remain unclear. Here, by using the Nearest Genetic Distance Approach with genetic sequences data, we reconstructed the global transmission patterns of 4 most common subtypes of influenza A virus (H1N1, H3N2, H5N1, and H7N9) and analyzed associations of transmission velocity of these influenza viruses with environmental factors. We found that the transmission patterns of influenza viruses and their associations with environmental factors were closely related to their host properties. H1N1 and H3N2, which are mainly held by humans, are transmitted between regions at high velocity and over long distances, which may be due to human transportation via airplane; while H5N1 and H7N9, which are mainly carried by animals, are transmitted locally at short distances and at low velocity, which may be facilitated by poultry transportation via railways or high ways. H1N1 and H3N2 spread faster in cold seasons, while H5N1 spread faster in both cold and warm seasons, and H7N9 spread faster in wet seasons. H1N1, H3N2, and H5N1 spread faster in places with both high and low human densities. Our study provided novel insights into the global transmission patterns, processes, and management strategies for influenza under accelerated global change. |
format | Online Article Text |
id | pubmed-9292709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92927092022-07-20 Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors CHENG, Chaoyuan LI, Jing LIU, Wenjun XU, Lei ZHANG, Zhibin Integr Zool Special Subsection: Infectious Diseases in Wildlife Influenza A virus has caused huge damage to human health and poultry production worldwide, but its global transmission patterns and influencing factors remain unclear. Here, by using the Nearest Genetic Distance Approach with genetic sequences data, we reconstructed the global transmission patterns of 4 most common subtypes of influenza A virus (H1N1, H3N2, H5N1, and H7N9) and analyzed associations of transmission velocity of these influenza viruses with environmental factors. We found that the transmission patterns of influenza viruses and their associations with environmental factors were closely related to their host properties. H1N1 and H3N2, which are mainly held by humans, are transmitted between regions at high velocity and over long distances, which may be due to human transportation via airplane; while H5N1 and H7N9, which are mainly carried by animals, are transmitted locally at short distances and at low velocity, which may be facilitated by poultry transportation via railways or high ways. H1N1 and H3N2 spread faster in cold seasons, while H5N1 spread faster in both cold and warm seasons, and H7N9 spread faster in wet seasons. H1N1, H3N2, and H5N1 spread faster in places with both high and low human densities. Our study provided novel insights into the global transmission patterns, processes, and management strategies for influenza under accelerated global change. John Wiley and Sons Inc. 2020-08-06 2021-11 /pmc/articles/PMC9292709/ /pubmed/32649020 http://dx.doi.org/10.1111/1749-4877.12469 Text en © 2020 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Special Subsection: Infectious Diseases in Wildlife CHENG, Chaoyuan LI, Jing LIU, Wenjun XU, Lei ZHANG, Zhibin Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors |
title | Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors |
title_full | Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors |
title_fullStr | Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors |
title_full_unstemmed | Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors |
title_short | Modeling analysis revealed the distinct global transmission patterns of influenza A viruses and their influencing factors |
title_sort | modeling analysis revealed the distinct global transmission patterns of influenza a viruses and their influencing factors |
topic | Special Subsection: Infectious Diseases in Wildlife |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292709/ https://www.ncbi.nlm.nih.gov/pubmed/32649020 http://dx.doi.org/10.1111/1749-4877.12469 |
work_keys_str_mv | AT chengchaoyuan modelinganalysisrevealedthedistinctglobaltransmissionpatternsofinfluenzaavirusesandtheirinfluencingfactors AT lijing modelinganalysisrevealedthedistinctglobaltransmissionpatternsofinfluenzaavirusesandtheirinfluencingfactors AT liuwenjun modelinganalysisrevealedthedistinctglobaltransmissionpatternsofinfluenzaavirusesandtheirinfluencingfactors AT xulei modelinganalysisrevealedthedistinctglobaltransmissionpatternsofinfluenzaavirusesandtheirinfluencingfactors AT zhangzhibin modelinganalysisrevealedthedistinctglobaltransmissionpatternsofinfluenzaavirusesandtheirinfluencingfactors |