Cargando…
Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans
Salmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non‐typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic divers...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292744/ https://www.ncbi.nlm.nih.gov/pubmed/33665941 http://dx.doi.org/10.1111/jam.15055 |
_version_ | 1784749447685603328 |
---|---|
author | Sears, K.T. Galen, J.E. Tennant, S.M. |
author_facet | Sears, K.T. Galen, J.E. Tennant, S.M. |
author_sort | Sears, K.T. |
collection | PubMed |
description | Salmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non‐typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic diversity between the thousands of serovars capable of causing infection in humans. However, a number of attenuated candidate vaccine strains are currently being developed. As facultative intracellular pathogens with multiple systems for transporting effector proteins to host cells, attenuated Salmonella strains can also serve as ideal tools for the delivery of foreign antigens to create multivalent live carrier vaccines for simultaneous immunization against several unrelated pathogens. Further, the ease with which Salmonella can be genetically modified and the extensive knowledge of the virulence mechanisms of this pathogen means that this bacterium has often served as a model organism to test new approaches. In this review we focus on (1) recent advances in live attenuated Salmonella vaccine development, (2) improvements in expression of foreign antigens in carrier vaccines and (3) adaptation of attenuated strains as sources of purified antigens and vesicles that can be used for subunit and conjugate vaccines or together with attenuated vaccine strains in heterologous prime‐boosting immunization strategies. These advances have led to the development of new vaccines against Salmonella which have or will soon be tested in clinical trials. |
format | Online Article Text |
id | pubmed-9292744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92927442022-07-20 Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans Sears, K.T. Galen, J.E. Tennant, S.M. J Appl Microbiol Review Articles Salmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non‐typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic diversity between the thousands of serovars capable of causing infection in humans. However, a number of attenuated candidate vaccine strains are currently being developed. As facultative intracellular pathogens with multiple systems for transporting effector proteins to host cells, attenuated Salmonella strains can also serve as ideal tools for the delivery of foreign antigens to create multivalent live carrier vaccines for simultaneous immunization against several unrelated pathogens. Further, the ease with which Salmonella can be genetically modified and the extensive knowledge of the virulence mechanisms of this pathogen means that this bacterium has often served as a model organism to test new approaches. In this review we focus on (1) recent advances in live attenuated Salmonella vaccine development, (2) improvements in expression of foreign antigens in carrier vaccines and (3) adaptation of attenuated strains as sources of purified antigens and vesicles that can be used for subunit and conjugate vaccines or together with attenuated vaccine strains in heterologous prime‐boosting immunization strategies. These advances have led to the development of new vaccines against Salmonella which have or will soon be tested in clinical trials. John Wiley and Sons Inc. 2021-04-03 2021-12 /pmc/articles/PMC9292744/ /pubmed/33665941 http://dx.doi.org/10.1111/jam.15055 Text en © 2021 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Articles Sears, K.T. Galen, J.E. Tennant, S.M. Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans |
title | Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans |
title_full | Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans |
title_fullStr | Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans |
title_full_unstemmed | Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans |
title_short | Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans |
title_sort | advances in the development of salmonella‐based vaccine strategies for protection against salmonellosis in humans |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292744/ https://www.ncbi.nlm.nih.gov/pubmed/33665941 http://dx.doi.org/10.1111/jam.15055 |
work_keys_str_mv | AT searskt advancesinthedevelopmentofsalmonellabasedvaccinestrategiesforprotectionagainstsalmonellosisinhumans AT galenje advancesinthedevelopmentofsalmonellabasedvaccinestrategiesforprotectionagainstsalmonellosisinhumans AT tennantsm advancesinthedevelopmentofsalmonellabasedvaccinestrategiesforprotectionagainstsalmonellosisinhumans |