Cargando…
Block coordinate descent algorithm improves variable selection and estimation in error‐in‐variables regression
Medical research increasingly includes high‐dimensional regression modeling with a need for error‐in‐variables methods. The Convex Conditioned Lasso (CoCoLasso) utilizes a reformulated Lasso objective function and an error‐corrected cross‐validation to enable error‐in‐variables regression, but requi...
Autores principales: | Escribe, Célia, Lu, Tianyuan, Keller‐Baruch, Julyan, Forgetta, Vincenzo, Xiao, Bowei, Richards, J. Brent, Bhatnagar, Sahir, Oualkacha, Karim, Greenwood, Celia M. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292988/ https://www.ncbi.nlm.nih.gov/pubmed/34468045 http://dx.doi.org/10.1002/gepi.22430 |
Ejemplares similares
-
Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data
por: St-Pierre, Julien, et al.
Publicado: (2023) -
Joint analysis of multiple blood pressure phenotypes in GAW19 data by using a multivariate rare-variant association test
por: Sun, Jianping, et al.
Publicado: (2016) -
Pathway analysis for genetic association studies: to do, or not to do? That is the
question
por: Dufresne, Line, et al.
Publicado: (2014) -
Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models
por: Bhatnagar, Sahir R., et al.
Publicado: (2020) -
A method for analyzing multiple continuous phenotypes in rare variant association studies allowing for flexible correlations in variant effects
por: Sun, Jianping, et al.
Publicado: (2016)