Cargando…
Pharmacokinetics of butorphanol in male neutered cats anesthetized with isoflurane
This study characterized the pharmacokinetics of butorphanol in cats anesthetized with isoflurane. Six young healthy male neutered cats were used. Cats were anesthetized with isoflurane in oxygen. Catheters were placed in a jugular vein for blood sampling and in a medial saphenous vein for butorphan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293126/ https://www.ncbi.nlm.nih.gov/pubmed/34558086 http://dx.doi.org/10.1111/jvp.13014 |
Sumario: | This study characterized the pharmacokinetics of butorphanol in cats anesthetized with isoflurane. Six young healthy male neutered cats were used. Cats were anesthetized with isoflurane in oxygen. Catheters were placed in a jugular vein for blood sampling and in a medial saphenous vein for butorphanol and lactated Ringer's solution administration. Butorphanol tartrate (1 mg/kg over 5 min) was administered intravenously. Blood samples were collected prior to butorphanol administration and at various times up to 365 min following administration. Plasma butorphanol concentration was measured using liquid chromatography/tandem mass spectrometry. Compartment models were fitted to the time‐concentration data using nonlinear mixed effect modeling. A three‐compartment model best fitted the data. Typical value (% interindividual variability) for the three volumes of distribution, the metabolic clearance, and the two distribution clearances were 230 (72), 1095 (not estimated), and 2596 (not estimated) ml/kg, and 18.4 (72), 169.6 (52), and 55.0 (43), respectively. Pharmacokinetic simulation suggested that a loading dose (µg/kg) calculated as 0.287 × target plasma concentration in ng/ml (C(T)) followed by intravenous infusions (µg/kg/min) of 0.098 × C(T) for 20 min, 0.049 × C(T) for 40 min, and 0.022 × C(T) thereafter would rapidly achieve and maintain C(T) ± 10% for up to 6.5 h. |
---|