Cargando…
Evolution of resistance under alternative models of selective interference
The use of multiple pesticides or drugs can lead to a simultaneous selection pressure for resistance alleles at different loci. Models of resistance evolution focus on how this can delay the spread of resistance through a population, but often neglect how this can also reduce the probability that a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293239/ https://www.ncbi.nlm.nih.gov/pubmed/34449949 http://dx.doi.org/10.1111/jeb.13919 |
Sumario: | The use of multiple pesticides or drugs can lead to a simultaneous selection pressure for resistance alleles at different loci. Models of resistance evolution focus on how this can delay the spread of resistance through a population, but often neglect how this can also reduce the probability that a resistance allele spreads. This neglected factor has been studied in a parallel literature as selective interference. Models of interference use alternative constructions of fitness, where selection coefficients from different loci either add or multiply. Although these are equivalent under weak selection, the two constructions make alternative predictions under the strong selection that characterizes resistance evolution. Here, simulations are used to examine the effects of interference on the probability of fixation and time to fixation of a new and strongly beneficial mutation in the presence of another strongly beneficial allele with variable starting frequency. The results from simulations show a complicated pattern of effects. The key result is that, under multiplicativity, the presence of the strongly beneficial allele leads to a small reduction in the probability of fixation for the new beneficial mutation up to ~10%, and a negligible increase in the average time to fixation up to ~2%, whereas under additivity, the effect is more substantial at up to ~50% for the probability of fixation and ~100% for the average time to fixation. Consequently, the effect of interference is only an important feature of resistance evolution under additivity. Current evidence from studies of experimental evolution provides widespread support for the basic features of additivity, which suggests that interference may afford resistance a different pattern of evolution than other adaptations: rather than the gradual and simultaneous selection of many alleles with small effects, the rapid evolution of resistance may involve the sequential selection of alleles with large effects. |
---|