Cargando…
TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation
retinal image is a crucial window for the clinical observation of cardiovascular, cerebrovascular, or other correlated diseases. Retinal vessel segmentation is of great benefit to the clinical diagnosis. Recently, the convolutional neural network (CNN) has become a dominant method in the retinal ves...
Autores principales: | Zhang, Hongbin, Zhong, Xiang, Li, Zhijie, Chen, Yanan, Zhu, Zhiliang, Lv, Jingqin, Li, Chuanxiu, Zhou, Ying, Li, Guangli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293566/ https://www.ncbi.nlm.nih.gov/pubmed/35859930 http://dx.doi.org/10.1155/2022/9016401 |
Ejemplares similares
-
TCU-Net: Transformer Embedded in Convolutional U-Shaped Network for Retinal Vessel Segmentation
por: Shi, Zidi, et al.
Publicado: (2023) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
por: Wang, Jinke, et al.
Publicado: (2021) -
SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation
por: Ni, Jiajia, et al.
Publicado: (2022) -
HT-Net: A Hybrid Transformer Network for Fundus Vessel Segmentation
por: Hu, Xiaolong, et al.
Publicado: (2022)