Cargando…
An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks
A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, segmentation, and classification that are integrated sequentially into one framework to assist the radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass classificat...
Autores principales: | Baccouche, Asma, Garcia-Zapirain, Begonya, Elmaghraby, Adel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293883/ https://www.ncbi.nlm.nih.gov/pubmed/35851592 http://dx.doi.org/10.1038/s41598-022-15632-6 |
Ejemplares similares
-
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Baccouche, Asma, et al.
Publicado: (2021) -
Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning
por: Zahia, Sofia, et al.
Publicado: (2020) -
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
por: Hameed, Zabit, et al.
Publicado: (2020) -
QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks
por: Shuvo, Md Hossain, et al.
Publicado: (2020) -
Efficient use of mobile devices for quantification of pressure injury images
por: Garcia-Zapirain, Begonya, et al.
Publicado: (2018)