Cargando…
Comparative analysis of high- and low-level deep learning approaches in microsatellite instability prediction
Deep learning-based approaches in histopathology can be largely divided into two categories: a high-level approach using an end-to-end model and a low-level approach using feature extractors. Although the advantages and disadvantages of both approaches are empirically well known, there exists no sci...
Autores principales: | Park, Jeonghyuk, Chung, Yul Ri, Nose, Akinao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293930/ https://www.ncbi.nlm.nih.gov/pubmed/35851285 http://dx.doi.org/10.1038/s41598-022-16283-3 |
Ejemplares similares
-
Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila
por: Park, Jeonghyuk, et al.
Publicado: (2018) -
Aggregation of cohorts for histopathological diagnosis with deep morphological analysis
por: Park, Jeonghyuk, et al.
Publicado: (2021) -
Development and validation of MRI‐based deep learning models for prediction of microsatellite instability in rectal cancer
por: Zhang, Wei, et al.
Publicado: (2021) -
Editorial: Microsatellite and microsatellite instability
por: How-Kit, Alexandre, et al.
Publicado: (2023) -
Generation of neuromuscular specificity in Drosophila: novel mechanisms revealed by new technologies
por: Nose, Akinao
Publicado: (2012)