Cargando…
Improving automatic liver tumor segmentation in late-phase MRI using multi-model training and 3D convolutional neural networks
Automatic liver tumor segmentation can facilitate the planning of liver interventions. For diagnosis of hepatocellular carcinoma, dynamic contrast-enhanced MRI (DCE-MRI) can yield a higher sensitivity than contrast-enhanced CT. However, most studies on automatic liver lesion segmentation have focuse...
Autores principales: | Hänsch, Annika, Chlebus, Grzegorz, Meine, Hans, Thielke, Felix, Kock, Farina, Paulus, Tobias, Abolmaali, Nasreddin, Schenk, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293996/ https://www.ncbi.nlm.nih.gov/pubmed/35851322 http://dx.doi.org/10.1038/s41598-022-16388-9 |
Ejemplares similares
-
Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections
por: Chlebus, Grzegorz, et al.
Publicado: (2019) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018) -
Landmark-based evaluation of a deformable motion correction for DCE-MRI of the liver
por: Strehlow, Jan, et al.
Publicado: (2018) -
Automatic Segmentation of MRI of Brain Tumor Using Deep Convolutional Network
por: Zhou, Runwei, et al.
Publicado: (2022) -
Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
por: Jiao, Han, et al.
Publicado: (2020)