Cargando…
A comparison of two frameworks for multi-state modelling, applied to outcomes after hospital admissions with COVID-19
We compare two multi-state modelling frameworks that can be used to represent dates of events following hospital admission for people infected during an epidemic. The methods are applied to data from people admitted to hospital with COVID-19, to estimate the probability of admission to intensive car...
Autores principales: | Jackson, Christopher H, Tom, Brian DM, Kirwan, Peter D, Mandal, Sema, Seaman, Shaun R, Kunzmann, Kevin, Presanis, Anne M, De Angelis, Daniela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294033/ https://www.ncbi.nlm.nih.gov/pubmed/35837731 http://dx.doi.org/10.1177/09622802221106720 |
Ejemplares similares
-
Estimating a time-to-event distribution from right-truncated data in
an epidemic: A review of methods
por: Seaman, Shaun R, et al.
Publicado: (2021) -
Review of methods for handling confounding by cluster and informative cluster size in clustered data
por: Seaman, Shaun, et al.
Publicado: (2014) -
Applying deep learning-based multi-modal for detection of coronavirus
por: Rani, Geeta, et al.
Publicado: (2021) -
Trends in COVID-19 hospital outcomes in England before and after vaccine introduction, a cohort study
por: Kirwan, Peter D., et al.
Publicado: (2022) -
Risk of hospital admission for patients with SARS-CoV-2 variant B.1.1.7: cohort analysis
por: Nyberg, Tommy, et al.
Publicado: (2021)