Cargando…

Neural and computational processes of accelerated perceptual awareness and decisions: A 7T fMRI study

Rapidly detecting salient information in our environments is critical for survival. Visual processing in subcortical areas like the pulvinar and amygdala has been shown to facilitate unconscious processing of salient stimuli. It is unknown, however, if and how these areas might interact with cortica...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalhan, Shivam, McFadyen, Jessica, Tsuchiya, Naotsugu, Garrido, Marta I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294306/
https://www.ncbi.nlm.nih.gov/pubmed/35470490
http://dx.doi.org/10.1002/hbm.25889
Descripción
Sumario:Rapidly detecting salient information in our environments is critical for survival. Visual processing in subcortical areas like the pulvinar and amygdala has been shown to facilitate unconscious processing of salient stimuli. It is unknown, however, if and how these areas might interact with cortical regions to facilitate faster conscious perception of salient stimuli. Here we investigated these neural processes using 7T functional magnetic resonance imaging (fMRI) in concert with computational modelling while participants (n = 33) engaged in a breaking continuous flash suppression paradigm (bCFS) in which fearful and neutral faces are initially suppressed from conscious perception but then eventually ‘breakthrough’ into awareness. Participants reported faster breakthrough times for fearful faces compared with neutral faces. Drift‐diffusion modelling suggested that perceptual evidence was accumulated at a faster rate for fearful faces compared with neutral faces. For both neutral and fearful faces, faster response times were associated with greater activity in the amygdala (specifically within its subregions, including superficial, basolateral and amygdalo‐striatal transition area) and the insula. Faster rates of evidence accumulation coincided with greater activity in frontoparietal regions and occipital lobe, as well as the amygdala. A lower decision‐boundary correlated with activity in the insula and the posterior cingulate cortex (PCC), but not with the amygdala. Overall, our findings suggest that hastened perceptual awareness of salient stimuli recruits the amygdala and, more specifically, is driven by accelerated evidence accumulation in fronto‐parietal and visual areas. In sum, we have mapped distinct neural computations that accelerate perceptual awareness of visually suppressed faces.