Cargando…

Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models

Variations in mechanical properties of the extracellular matrix occurs in various processes, such as tissue fibrosis. The impact of changes in tissue stiffness on cell behaviour are studied in vitro using various types of biomaterials and methods. Stiffness patterning of hydrogel scaffolds, through...

Descripción completa

Detalles Bibliográficos
Autores principales: Chalard, Anaïs E., Dixon, Alexander W., Taberner, Andrew J., Malmström, Jenny
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294371/
https://www.ncbi.nlm.nih.gov/pubmed/35865624
http://dx.doi.org/10.3389/fcell.2022.946754
_version_ 1784749838242414592
author Chalard, Anaïs E.
Dixon, Alexander W.
Taberner, Andrew J.
Malmström, Jenny
author_facet Chalard, Anaïs E.
Dixon, Alexander W.
Taberner, Andrew J.
Malmström, Jenny
author_sort Chalard, Anaïs E.
collection PubMed
description Variations in mechanical properties of the extracellular matrix occurs in various processes, such as tissue fibrosis. The impact of changes in tissue stiffness on cell behaviour are studied in vitro using various types of biomaterials and methods. Stiffness patterning of hydrogel scaffolds, through the use of stiffness gradients for instance, allows the modelling and studying of cellular responses to fibrotic mechanisms. Gelatine methacryloyl (GelMA) has been used extensively in tissue engineering for its inherent biocompatibility and the ability to precisely tune its mechanical properties. Visible light is now increasingly employed for crosslinking GelMA hydrogels as it enables improved cell survival when performing cell encapsulation. We report here, the photopatterning of mechanical properties of GelMA hydrogels with visible light and eosin Y as the photoinitiator using physical photomasks and projection with a digital micromirror device. Using both methods, binary hydrogels with areas of different stiffnesses and hydrogels with stiffness gradients were fabricated. Their mechanical properties were characterised using force indentation with atomic force microscopy, which showed the efficiency of both methods to spatially pattern the elastic modulus of GelMA according to the photomask or the projected pattern. Crosslinking through projection was also used to build constructs with complex shapes. Overall, this work shows the feasibility of patterning the stiffness of GelMA scaffolds, in the range from healthy to pathological stiffness, with visible light. Consequently, this method could be used to build in vitro models of healthy and fibrotic tissue and study the cellular behaviours involved at the interface between the two.
format Online
Article
Text
id pubmed-9294371
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-92943712022-07-20 Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models Chalard, Anaïs E. Dixon, Alexander W. Taberner, Andrew J. Malmström, Jenny Front Cell Dev Biol Cell and Developmental Biology Variations in mechanical properties of the extracellular matrix occurs in various processes, such as tissue fibrosis. The impact of changes in tissue stiffness on cell behaviour are studied in vitro using various types of biomaterials and methods. Stiffness patterning of hydrogel scaffolds, through the use of stiffness gradients for instance, allows the modelling and studying of cellular responses to fibrotic mechanisms. Gelatine methacryloyl (GelMA) has been used extensively in tissue engineering for its inherent biocompatibility and the ability to precisely tune its mechanical properties. Visible light is now increasingly employed for crosslinking GelMA hydrogels as it enables improved cell survival when performing cell encapsulation. We report here, the photopatterning of mechanical properties of GelMA hydrogels with visible light and eosin Y as the photoinitiator using physical photomasks and projection with a digital micromirror device. Using both methods, binary hydrogels with areas of different stiffnesses and hydrogels with stiffness gradients were fabricated. Their mechanical properties were characterised using force indentation with atomic force microscopy, which showed the efficiency of both methods to spatially pattern the elastic modulus of GelMA according to the photomask or the projected pattern. Crosslinking through projection was also used to build constructs with complex shapes. Overall, this work shows the feasibility of patterning the stiffness of GelMA scaffolds, in the range from healthy to pathological stiffness, with visible light. Consequently, this method could be used to build in vitro models of healthy and fibrotic tissue and study the cellular behaviours involved at the interface between the two. Frontiers Media S.A. 2022-07-05 /pmc/articles/PMC9294371/ /pubmed/35865624 http://dx.doi.org/10.3389/fcell.2022.946754 Text en Copyright © 2022 Chalard, Dixon, Taberner and Malmström. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cell and Developmental Biology
Chalard, Anaïs E.
Dixon, Alexander W.
Taberner, Andrew J.
Malmström, Jenny
Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models
title Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models
title_full Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models
title_fullStr Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models
title_full_unstemmed Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models
title_short Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models
title_sort visible-light stiffness patterning of gelma hydrogels towards in vitro scar tissue models
topic Cell and Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294371/
https://www.ncbi.nlm.nih.gov/pubmed/35865624
http://dx.doi.org/10.3389/fcell.2022.946754
work_keys_str_mv AT chalardanaise visiblelightstiffnesspatterningofgelmahydrogelstowardsinvitroscartissuemodels
AT dixonalexanderw visiblelightstiffnesspatterningofgelmahydrogelstowardsinvitroscartissuemodels
AT tabernerandrewj visiblelightstiffnesspatterningofgelmahydrogelstowardsinvitroscartissuemodels
AT malmstromjenny visiblelightstiffnesspatterningofgelmahydrogelstowardsinvitroscartissuemodels